Machine Learning Algorithm for Detecting and Predicting Chronic Kidney Disease Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.13005/bpj/3165
Chronic kidney disease is a progressive condition that often remains undiagnosed until its later stages due to the absence of noticeable symptoms. Early detection is essential for timely intervention and treatment. Whereas other research has mostly centered on the detection of kidney disease in later stages, this research contributes to the field by combining predictive modeling in order to ascertain disease progression in earlier phases. Through the use of both multi-classification and binary classification methods, this research improves the knowledge of chronic kidney disease progression, enabling specific treatment approaches. Sophisticated machine learning algorithms like K-Nearest Neighbor, Decision Tree, and Random Forest have been used to evaluate the accuracy of disease stage prediction. Comparative analysis of different predictive models indicates their efficiency, resulting in enhanced diagnostic accuracy and efficiency. This study adds value to the health industry through the application of machine learning in the early diagnosis and improved management of diseases. Disease prediction enables clinicians to apply timely interventions, minimize complications, and in the end, decrease morbidity and mortality rates related to kidney disease. All these activities come in line with the world aim of enhancing health outcomes and well-being. The anticipated predictive model evidenced a precision rate of 99.16 percent, outpacing other studies using different machine learning classifiers such as Random Forest Classifier, Ada Boost Classifier, Cat Boost, Stochastic Gradient Boosting, Gradient Boosting Classifier, Extreme Gradient Boosting, K-Nearest Neighbor, Extra Trees Classifier, and Decision Tree Classifier. This paper strengthens the importance of artificial intelligence in promoting the diagnostics of chronic kidney disease as well as outcomes in patient care.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.13005/bpj/3165
- OA Status
- diamond
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412383590
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412383590Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.13005/bpj/3165Digital Object Identifier
- Title
-
Machine Learning Algorithm for Detecting and Predicting Chronic Kidney DiseaseWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-30Full publication date if available
- Authors
-
Sandeep Sharma, Saruchi Saruchi, Avneesh Narwal, K Meghana, Manjeet Singh, Rohit Maurya, Yash UpadhyayList of authors in order
- Landing page
-
https://doi.org/10.13005/bpj/3165Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.13005/bpj/3165Direct OA link when available
- Concepts
-
Kidney disease, Computer science, Machine learning, Artificial intelligence, Algorithm, Medicine, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412383590 |
|---|---|
| doi | https://doi.org/10.13005/bpj/3165 |
| ids.doi | https://doi.org/10.13005/bpj/3165 |
| ids.openalex | https://openalex.org/W4412383590 |
| fwci | 0.0 |
| type | article |
| title | Machine Learning Algorithm for Detecting and Predicting Chronic Kidney Disease |
| biblio.issue | 2 |
| biblio.volume | 18 |
| biblio.last_page | 1250 |
| biblio.first_page | 1235 |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9868000149726868 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| topics[1].id | https://openalex.org/T12935 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9114000201225281 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2713 |
| topics[1].subfield.display_name | Epidemiology |
| topics[1].display_name | Healthcare Systems and Public Health |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778653478 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5909126996994019 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1054718 |
| concepts[0].display_name | Kidney disease |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5649555921554565 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.49516573548316956 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.48655906319618225 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.38360974192619324 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3095882833003998 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C126322002 |
| concepts[6].level | 1 |
| concepts[6].score | 0.1956755518913269 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[6].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/kidney-disease |
| keywords[0].score | 0.5909126996994019 |
| keywords[0].display_name | Kidney disease |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5649555921554565 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.49516573548316956 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.48655906319618225 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.38360974192619324 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.3095882833003998 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/internal-medicine |
| keywords[6].score | 0.1956755518913269 |
| keywords[6].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.13005/bpj/3165 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764856905 |
| locations[0].source.issn | 0974-6242, 2456-2610 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0974-6242 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Biomedical & Pharmacology Journal |
| locations[0].source.host_organization | https://openalex.org/P4320800656 |
| locations[0].source.host_organization_name | Oriental Scientific Publishing Company |
| locations[0].source.host_organization_lineage | https://openalex.org/P4320800656 |
| locations[0].source.host_organization_lineage_names | Oriental Scientific Publishing Company |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Biomedical and Pharmacology Journal |
| locations[0].landing_page_url | https://doi.org/10.13005/bpj/3165 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100671833 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-5828-2513 |
| authorships[0].author.display_name | Sandeep Sharma |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I110360157 |
| authorships[0].affiliations[0].raw_affiliation_string | 1Department of Computer Science Engineering, Lovely Professional University, Phagwara Punjab, India |
| authorships[0].institutions[0].id | https://openalex.org/I110360157 |
| authorships[0].institutions[0].ror | https://ror.org/00et6q107 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I110360157 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Lovely Professional University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sandeep Sharma |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | 1Department of Computer Science Engineering, Lovely Professional University, Phagwara Punjab, India |
| authorships[1].author.id | https://openalex.org/A5041877669 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Saruchi Saruchi |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I101407740 |
| authorships[1].affiliations[0].raw_affiliation_string | 2Department of Computer Science Engineering Chandigarh University, Gharuan, Mohali, Punjab India. |
| authorships[1].institutions[0].id | https://openalex.org/I101407740 |
| authorships[1].institutions[0].ror | https://ror.org/05t4pvx35 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I101407740 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Chandigarh University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Saruchi Saruchi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | 2Department of Computer Science Engineering Chandigarh University, Gharuan, Mohali, Punjab India. |
| authorships[2].author.id | https://openalex.org/A5118972396 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Avneesh Narwal |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I101407740 |
| authorships[2].affiliations[0].raw_affiliation_string | 2Department of Computer Science Engineering Chandigarh University, Gharuan, Mohali, Punjab India. |
| authorships[2].institutions[0].id | https://openalex.org/I101407740 |
| authorships[2].institutions[0].ror | https://ror.org/05t4pvx35 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I101407740 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Chandigarh University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Avneesh Narwal |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | 2Department of Computer Science Engineering Chandigarh University, Gharuan, Mohali, Punjab India. |
| authorships[3].author.id | https://openalex.org/A5110606444 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | K Meghana |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I110360157 |
| authorships[3].affiliations[0].raw_affiliation_string | 1Department of Computer Science Engineering, Lovely Professional University, Phagwara Punjab, India |
| authorships[3].institutions[0].id | https://openalex.org/I110360157 |
| authorships[3].institutions[0].ror | https://ror.org/00et6q107 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I110360157 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Lovely Professional University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kanaparthi Chandra Meghana |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | 1Department of Computer Science Engineering, Lovely Professional University, Phagwara Punjab, India |
| authorships[4].author.id | https://openalex.org/A5103328314 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Manjeet Singh |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I110360157 |
| authorships[4].affiliations[0].raw_affiliation_string | 1Department of Computer Science Engineering, Lovely Professional University, Phagwara Punjab, India |
| authorships[4].institutions[0].id | https://openalex.org/I110360157 |
| authorships[4].institutions[0].ror | https://ror.org/00et6q107 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I110360157 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Lovely Professional University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Manjeet Singh |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | 1Department of Computer Science Engineering, Lovely Professional University, Phagwara Punjab, India |
| authorships[5].author.id | https://openalex.org/A5006101244 |
| authorships[5].author.orcid | https://orcid.org/0009-0009-6806-0345 |
| authorships[5].author.display_name | Rohit Maurya |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I110360157 |
| authorships[5].affiliations[0].raw_affiliation_string | 1Department of Computer Science Engineering, Lovely Professional University, Phagwara Punjab, India |
| authorships[5].institutions[0].id | https://openalex.org/I110360157 |
| authorships[5].institutions[0].ror | https://ror.org/00et6q107 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I110360157 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Lovely Professional University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Rohit Kumar Maurya |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | 1Department of Computer Science Engineering, Lovely Professional University, Phagwara Punjab, India |
| authorships[6].author.id | https://openalex.org/A5011394054 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Yash Upadhyay |
| authorships[6].countries | IN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I110360157 |
| authorships[6].affiliations[0].raw_affiliation_string | 1Department of Computer Science Engineering, Lovely Professional University, Phagwara Punjab, India |
| authorships[6].institutions[0].id | https://openalex.org/I110360157 |
| authorships[6].institutions[0].ror | https://ror.org/00et6q107 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I110360157 |
| authorships[6].institutions[0].country_code | IN |
| authorships[6].institutions[0].display_name | Lovely Professional University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yash Upadhyay |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | 1Department of Computer Science Engineering, Lovely Professional University, Phagwara Punjab, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.13005/bpj/3165 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine Learning Algorithm for Detecting and Predicting Chronic Kidney Disease |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9868000149726868 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.13005/bpj/3165 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764856905 |
| best_oa_location.source.issn | 0974-6242, 2456-2610 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0974-6242 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Biomedical & Pharmacology Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4320800656 |
| best_oa_location.source.host_organization_name | Oriental Scientific Publishing Company |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4320800656 |
| best_oa_location.source.host_organization_lineage_names | Oriental Scientific Publishing Company |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Biomedical and Pharmacology Journal |
| best_oa_location.landing_page_url | https://doi.org/10.13005/bpj/3165 |
| primary_location.id | doi:10.13005/bpj/3165 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764856905 |
| primary_location.source.issn | 0974-6242, 2456-2610 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0974-6242 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Biomedical & Pharmacology Journal |
| primary_location.source.host_organization | https://openalex.org/P4320800656 |
| primary_location.source.host_organization_name | Oriental Scientific Publishing Company |
| primary_location.source.host_organization_lineage | https://openalex.org/P4320800656 |
| primary_location.source.host_organization_lineage_names | Oriental Scientific Publishing Company |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Biomedical and Pharmacology Journal |
| primary_location.landing_page_url | https://doi.org/10.13005/bpj/3165 |
| publication_date | 2025-06-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2752073414, https://openalex.org/W2560015483, https://openalex.org/W2945048168, https://openalex.org/W2902348370, https://openalex.org/W3094177185, https://openalex.org/W2933013505, https://openalex.org/W4200420294, https://openalex.org/W4212849248, https://openalex.org/W3044717835, https://openalex.org/W4383620422, https://openalex.org/W3125584267, https://openalex.org/W2895906293, https://openalex.org/W3113773467, https://openalex.org/W2972606465, https://openalex.org/W4315618772, https://openalex.org/W1976594465, https://openalex.org/W3103367656, https://openalex.org/W2903314155, https://openalex.org/W4251513392, https://openalex.org/W4380027840, https://openalex.org/W4388775200, https://openalex.org/W4388049877, https://openalex.org/W4368376270, https://openalex.org/W4392307815 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 4, 195 |
| abstract_inverted_index.as | 210, 253, 255 |
| abstract_inverted_index.by | 52 |
| abstract_inverted_index.in | 43, 56, 62, 122, 142, 162, 178, 245, 257 |
| abstract_inverted_index.is | 3, 24 |
| abstract_inverted_index.of | 19, 40, 68, 80, 108, 114, 139, 149, 184, 198, 242, 249 |
| abstract_inverted_index.on | 37 |
| abstract_inverted_index.to | 16, 49, 58, 104, 132, 155, 171 |
| abstract_inverted_index.Ada | 214 |
| abstract_inverted_index.All | 174 |
| abstract_inverted_index.Cat | 217 |
| abstract_inverted_index.The | 190 |
| abstract_inverted_index.aim | 183 |
| abstract_inverted_index.and | 29, 71, 98, 126, 146, 161, 167, 188, 233 |
| abstract_inverted_index.due | 15 |
| abstract_inverted_index.for | 26 |
| abstract_inverted_index.has | 34 |
| abstract_inverted_index.its | 12 |
| abstract_inverted_index.the | 17, 38, 50, 66, 78, 106, 133, 137, 143, 163, 181, 240, 247 |
| abstract_inverted_index.use | 67 |
| abstract_inverted_index.This | 128, 237 |
| abstract_inverted_index.Tree | 235 |
| abstract_inverted_index.adds | 130 |
| abstract_inverted_index.been | 102 |
| abstract_inverted_index.both | 69 |
| abstract_inverted_index.come | 177 |
| abstract_inverted_index.end, | 164 |
| abstract_inverted_index.have | 101 |
| abstract_inverted_index.like | 93 |
| abstract_inverted_index.line | 179 |
| abstract_inverted_index.rate | 197 |
| abstract_inverted_index.such | 209 |
| abstract_inverted_index.that | 7 |
| abstract_inverted_index.this | 46, 75 |
| abstract_inverted_index.used | 103 |
| abstract_inverted_index.well | 254 |
| abstract_inverted_index.with | 180 |
| abstract_inverted_index.99.16 | 199 |
| abstract_inverted_index.Boost | 215 |
| abstract_inverted_index.Early | 22 |
| abstract_inverted_index.Extra | 230 |
| abstract_inverted_index.Tree, | 97 |
| abstract_inverted_index.Trees | 231 |
| abstract_inverted_index.apply | 156 |
| abstract_inverted_index.care. | 259 |
| abstract_inverted_index.early | 144 |
| abstract_inverted_index.field | 51 |
| abstract_inverted_index.later | 13, 44 |
| abstract_inverted_index.model | 193 |
| abstract_inverted_index.often | 8 |
| abstract_inverted_index.order | 57 |
| abstract_inverted_index.other | 32, 202 |
| abstract_inverted_index.paper | 238 |
| abstract_inverted_index.rates | 169 |
| abstract_inverted_index.stage | 110 |
| abstract_inverted_index.study | 129 |
| abstract_inverted_index.their | 119 |
| abstract_inverted_index.these | 175 |
| abstract_inverted_index.until | 11 |
| abstract_inverted_index.using | 204 |
| abstract_inverted_index.value | 131 |
| abstract_inverted_index.world | 182 |
| abstract_inverted_index.Boost, | 218 |
| abstract_inverted_index.Forest | 100, 212 |
| abstract_inverted_index.Random | 99, 211 |
| abstract_inverted_index.binary | 72 |
| abstract_inverted_index.health | 134, 186 |
| abstract_inverted_index.kidney | 1, 41, 82, 172, 251 |
| abstract_inverted_index.models | 117 |
| abstract_inverted_index.mostly | 35 |
| abstract_inverted_index.stages | 14 |
| abstract_inverted_index.timely | 27, 157 |
| abstract_inverted_index.Chronic | 0 |
| abstract_inverted_index.Disease | 151 |
| abstract_inverted_index.Extreme | 225 |
| abstract_inverted_index.Through | 65 |
| abstract_inverted_index.Whereas | 31 |
| abstract_inverted_index.absence | 18 |
| abstract_inverted_index.chronic | 81, 250 |
| abstract_inverted_index.disease | 2, 42, 60, 83, 109, 252 |
| abstract_inverted_index.earlier | 63 |
| abstract_inverted_index.enables | 153 |
| abstract_inverted_index.machine | 90, 140, 206 |
| abstract_inverted_index.patient | 258 |
| abstract_inverted_index.phases. | 64 |
| abstract_inverted_index.related | 170 |
| abstract_inverted_index.remains | 9 |
| abstract_inverted_index.stages, | 45 |
| abstract_inverted_index.studies | 203 |
| abstract_inverted_index.through | 136 |
| abstract_inverted_index.Boosting | 223 |
| abstract_inverted_index.Decision | 96, 234 |
| abstract_inverted_index.Gradient | 220, 222, 226 |
| abstract_inverted_index.accuracy | 107, 125 |
| abstract_inverted_index.analysis | 113 |
| abstract_inverted_index.centered | 36 |
| abstract_inverted_index.decrease | 165 |
| abstract_inverted_index.disease. | 173 |
| abstract_inverted_index.enabling | 85 |
| abstract_inverted_index.enhanced | 123 |
| abstract_inverted_index.evaluate | 105 |
| abstract_inverted_index.improved | 147 |
| abstract_inverted_index.improves | 77 |
| abstract_inverted_index.industry | 135 |
| abstract_inverted_index.learning | 91, 141, 207 |
| abstract_inverted_index.methods, | 74 |
| abstract_inverted_index.minimize | 159 |
| abstract_inverted_index.modeling | 55 |
| abstract_inverted_index.outcomes | 187, 256 |
| abstract_inverted_index.percent, | 200 |
| abstract_inverted_index.research | 33, 47, 76 |
| abstract_inverted_index.specific | 86 |
| abstract_inverted_index.Boosting, | 221, 227 |
| abstract_inverted_index.K-Nearest | 94, 228 |
| abstract_inverted_index.Neighbor, | 95, 229 |
| abstract_inverted_index.ascertain | 59 |
| abstract_inverted_index.combining | 53 |
| abstract_inverted_index.condition | 6 |
| abstract_inverted_index.detection | 23, 39 |
| abstract_inverted_index.diagnosis | 145 |
| abstract_inverted_index.different | 115, 205 |
| abstract_inverted_index.diseases. | 150 |
| abstract_inverted_index.enhancing | 185 |
| abstract_inverted_index.essential | 25 |
| abstract_inverted_index.evidenced | 194 |
| abstract_inverted_index.indicates | 118 |
| abstract_inverted_index.knowledge | 79 |
| abstract_inverted_index.morbidity | 166 |
| abstract_inverted_index.mortality | 168 |
| abstract_inverted_index.outpacing | 201 |
| abstract_inverted_index.precision | 196 |
| abstract_inverted_index.promoting | 246 |
| abstract_inverted_index.resulting | 121 |
| abstract_inverted_index.symptoms. | 21 |
| abstract_inverted_index.treatment | 87 |
| abstract_inverted_index.Stochastic | 219 |
| abstract_inverted_index.activities | 176 |
| abstract_inverted_index.algorithms | 92 |
| abstract_inverted_index.artificial | 243 |
| abstract_inverted_index.clinicians | 154 |
| abstract_inverted_index.diagnostic | 124 |
| abstract_inverted_index.importance | 241 |
| abstract_inverted_index.management | 148 |
| abstract_inverted_index.noticeable | 20 |
| abstract_inverted_index.prediction | 152 |
| abstract_inverted_index.predictive | 54, 116, 192 |
| abstract_inverted_index.treatment. | 30 |
| abstract_inverted_index.Classifier, | 213, 216, 224, 232 |
| abstract_inverted_index.Classifier. | 236 |
| abstract_inverted_index.Comparative | 112 |
| abstract_inverted_index.anticipated | 191 |
| abstract_inverted_index.application | 138 |
| abstract_inverted_index.approaches. | 88 |
| abstract_inverted_index.classifiers | 208 |
| abstract_inverted_index.contributes | 48 |
| abstract_inverted_index.diagnostics | 248 |
| abstract_inverted_index.efficiency, | 120 |
| abstract_inverted_index.efficiency. | 127 |
| abstract_inverted_index.prediction. | 111 |
| abstract_inverted_index.progression | 61 |
| abstract_inverted_index.progressive | 5 |
| abstract_inverted_index.strengthens | 239 |
| abstract_inverted_index.undiagnosed | 10 |
| abstract_inverted_index.well-being. | 189 |
| abstract_inverted_index.intelligence | 244 |
| abstract_inverted_index.intervention | 28 |
| abstract_inverted_index.progression, | 84 |
| abstract_inverted_index.Sophisticated | 89 |
| abstract_inverted_index.classification | 73 |
| abstract_inverted_index.complications, | 160 |
| abstract_inverted_index.interventions, | 158 |
| abstract_inverted_index.multi-classification | 70 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.37776324 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |