Machine learning algorithms for delaminations detection on composites panels by wave propagation signals analysis: Review, experiences and results Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.paerosci.2024.100994
Performances are a key concern in aerospace vehicles, requiring safer structures with as little consumption as possible. Composite materials replaced aluminum alloys even in primary aerospace structures to achieve higher performances with lighter components. However, random events such as low-velocity impacts may induce damages that are typically more dangerous and mostly not visible than metals. The damage tolerance (DT) approach is adopted for the fatigue design of aircraft, but fracture mechanisms and propagation of failure prediction in composite structures are much more challenging. Consequently, the DT approach is still costly for these types of structures. It can be achieved only through expensive experimental testing and a drastic reduction of allowable stress levels and maintenance intervals by applying scattering factors due to the uncertainties involved in their original estimations. Structural health monitoring (SHM) systems deal mainly with sensorised structures providing signals related to their "load and health status" to reduce maintenance and weights. At the same time, the use of Deep Neural Networks (DNNs) based on strategic engineering criteria, for instance, may represent an effective and efficient analysis tool to promote faster data analysis and classification. In the field of aircraft maintenance, this approach may lead, for example, to a faster awareness of an aircraft/fleet situation or predict failures. Deep learning-based networks provide automatic feature extraction at different levels of abstraction. With the universal function approximation property of neural networks, it learns the inverse mapping from input space (signals) to target space (damage classes). Starting from the well-established Structural Health Monitoring (SHM) technologies, a network of distributed sensors embedded throughout the structure could be used for real-time structural monitoring and data acquisition. Structural data will constitute an enormous amount of information that can be adequately filtered with the help of specific DNNs designed and trained for the structural context and aimed to classify and identify significant parameters. The authors have collaborated for some years to collect wave propagation signals through experimental tests and validated numerical models of healthy and damaged composite structures, and developed machine learning algorithms (mainly dense and convolutional neural networks) aimed at signal classification and analysis for damage detection and localization. This paper presents a brief review of relevant works about SHM employing Machine Learning methodologies and summarizes the most promising approaches developed during the last years jointly by the two research groups and presents a critical analysis of obtained results and subsequent future activities.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.paerosci.2024.100994
- OA Status
- hybrid
- Cited By
- 17
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392799618
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392799618Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.paerosci.2024.100994Digital Object Identifier
- Title
-
Machine learning algorithms for delaminations detection on composites panels by wave propagation signals analysis: Review, experiences and resultsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-14Full publication date if available
- Authors
-
Ernesto Monaco, Mahindra Rautela, S. Gopalakrishnan, Fabrizio RicciList of authors in order
- Landing page
-
https://doi.org/10.1016/j.paerosci.2024.100994Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.paerosci.2024.100994Direct OA link when available
- Concepts
-
Algorithm, Computer science, Composite material, Acoustics, Materials science, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 6Per-year citation counts (last 5 years)
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392799618 |
|---|---|
| doi | https://doi.org/10.1016/j.paerosci.2024.100994 |
| ids.doi | https://doi.org/10.1016/j.paerosci.2024.100994 |
| ids.openalex | https://openalex.org/W4392799618 |
| fwci | 8.4971143 |
| type | article |
| title | Machine learning algorithms for delaminations detection on composites panels by wave propagation signals analysis: Review, experiences and results |
| biblio.issue | |
| biblio.volume | 146 |
| biblio.last_page | 100994 |
| biblio.first_page | 100994 |
| topics[0].id | https://openalex.org/T10662 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2211 |
| topics[0].subfield.display_name | Mechanics of Materials |
| topics[0].display_name | Ultrasonics and Acoustic Wave Propagation |
| topics[1].id | https://openalex.org/T10534 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9966999888420105 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Structural Health Monitoring Techniques |
| topics[2].id | https://openalex.org/T11609 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9901000261306763 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Geophysical Methods and Applications |
| is_xpac | False |
| apc_list.value | 5070 |
| apc_list.currency | USD |
| apc_list.value_usd | 5070 |
| apc_paid.value | 5070 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 5070 |
| concepts[0].id | https://openalex.org/C11413529 |
| concepts[0].level | 1 |
| concepts[0].score | 0.46963000297546387 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[0].display_name | Algorithm |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.44077861309051514 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C159985019 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4174032211303711 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[2].display_name | Composite material |
| concepts[3].id | https://openalex.org/C24890656 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3629518151283264 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[3].display_name | Acoustics |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.353776752948761 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.15358251333236694 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/algorithm |
| keywords[0].score | 0.46963000297546387 |
| keywords[0].display_name | Algorithm |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.44077861309051514 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/composite-material |
| keywords[2].score | 0.4174032211303711 |
| keywords[2].display_name | Composite material |
| keywords[3].id | https://openalex.org/keywords/acoustics |
| keywords[3].score | 0.3629518151283264 |
| keywords[3].display_name | Acoustics |
| keywords[4].id | https://openalex.org/keywords/materials-science |
| keywords[4].score | 0.353776752948761 |
| keywords[4].display_name | Materials science |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.15358251333236694 |
| keywords[5].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1016/j.paerosci.2024.100994 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S166193747 |
| locations[0].source.issn | 0376-0421, 1873-1724 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0376-0421 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Progress in Aerospace Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Progress in Aerospace Sciences |
| locations[0].landing_page_url | https://doi.org/10.1016/j.paerosci.2024.100994 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5078035609 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0326-0580 |
| authorships[0].author.display_name | Ernesto Monaco |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I71267560 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Industrial Engineering – Aerospace Section – Università degli Studi di Napoli "Federico II", Italy |
| authorships[0].institutions[0].id | https://openalex.org/I71267560 |
| authorships[0].institutions[0].ror | https://ror.org/05290cv24 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I71267560 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | University of Naples Federico II |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | E. Monaco |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Industrial Engineering – Aerospace Section – Università degli Studi di Napoli "Federico II", Italy |
| authorships[1].author.id | https://openalex.org/A5062519467 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2678-9682 |
| authorships[1].author.display_name | Mahindra Rautela |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I59270414 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India |
| authorships[1].institutions[0].id | https://openalex.org/I59270414 |
| authorships[1].institutions[0].ror | https://ror.org/04dese585 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I59270414 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Science Bangalore |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | M. Rautela |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India |
| authorships[2].author.id | https://openalex.org/A5032350542 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6165-6132 |
| authorships[2].author.display_name | S. Gopalakrishnan |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I59270414 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India |
| authorships[2].institutions[0].id | https://openalex.org/I59270414 |
| authorships[2].institutions[0].ror | https://ror.org/04dese585 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I59270414 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Science Bangalore |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | S. Gopalakrishnan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India |
| authorships[3].author.id | https://openalex.org/A5034352238 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5663-9175 |
| authorships[3].author.display_name | Fabrizio Ricci |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I71267560 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Industrial Engineering – Aerospace Section – Università degli Studi di Napoli "Federico II", Italy |
| authorships[3].institutions[0].id | https://openalex.org/I71267560 |
| authorships[3].institutions[0].ror | https://ror.org/05290cv24 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I71267560 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | University of Naples Federico II |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | F. Ricci |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Industrial Engineering – Aerospace Section – Università degli Studi di Napoli "Federico II", Italy |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.paerosci.2024.100994 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine learning algorithms for delaminations detection on composites panels by wave propagation signals analysis: Review, experiences and results |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10662 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2211 |
| primary_topic.subfield.display_name | Mechanics of Materials |
| primary_topic.display_name | Ultrasonics and Acoustic Wave Propagation |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W4246450666, https://openalex.org/W4388998267, https://openalex.org/W2051487156, https://openalex.org/W2898370298, https://openalex.org/W2137437058, https://openalex.org/W4390401159, https://openalex.org/W2744391499, https://openalex.org/W4230250635, https://openalex.org/W3041790586 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.paerosci.2024.100994 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S166193747 |
| best_oa_location.source.issn | 0376-0421, 1873-1724 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0376-0421 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Progress in Aerospace Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Progress in Aerospace Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.paerosci.2024.100994 |
| primary_location.id | doi:10.1016/j.paerosci.2024.100994 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S166193747 |
| primary_location.source.issn | 0376-0421, 1873-1724 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0376-0421 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Progress in Aerospace Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Progress in Aerospace Sciences |
| primary_location.landing_page_url | https://doi.org/10.1016/j.paerosci.2024.100994 |
| publication_date | 2024-03-14 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3216834857, https://openalex.org/W1891476538, https://openalex.org/W2759458178, https://openalex.org/W2896646997, https://openalex.org/W3203148953, https://openalex.org/W4305057267, https://openalex.org/W4205928580, https://openalex.org/W3159137010, https://openalex.org/W6791941550, https://openalex.org/W4285404487, https://openalex.org/W4366180265, https://openalex.org/W2912256126, https://openalex.org/W4223567372, https://openalex.org/W4307363882, https://openalex.org/W6843804473, https://openalex.org/W4366978153, https://openalex.org/W4387849566, https://openalex.org/W2092450485, https://openalex.org/W6627924708, https://openalex.org/W6630210095, https://openalex.org/W3145174082, https://openalex.org/W4317493070, https://openalex.org/W4224239850, https://openalex.org/W2905044467, https://openalex.org/W2151842197, https://openalex.org/W6790948290, https://openalex.org/W2556345765, https://openalex.org/W3171526124, https://openalex.org/W4223574512, https://openalex.org/W3202975394, https://openalex.org/W4281683418, https://openalex.org/W6805721882, https://openalex.org/W4322766346, https://openalex.org/W6854966717, https://openalex.org/W4281393376, https://openalex.org/W3214396588, https://openalex.org/W3170466253, https://openalex.org/W3195010849, https://openalex.org/W6852229927, https://openalex.org/W6674914833, https://openalex.org/W4298148254, https://openalex.org/W4301045096, https://openalex.org/W4206008431, https://openalex.org/W4385444649 |
| referenced_works_count | 44 |
| abstract_inverted_index.a | 2, 105, 198, 252, 356, 387 |
| abstract_inverted_index.At | 152 |
| abstract_inverted_index.DT | 85 |
| abstract_inverted_index.In | 185 |
| abstract_inverted_index.It | 95 |
| abstract_inverted_index.an | 172, 202, 275 |
| abstract_inverted_index.as | 12, 15, 38 |
| abstract_inverted_index.at | 215, 343 |
| abstract_inverted_index.be | 97, 262, 282 |
| abstract_inverted_index.by | 115, 380 |
| abstract_inverted_index.in | 5, 23, 76, 124 |
| abstract_inverted_index.is | 60, 87 |
| abstract_inverted_index.it | 229 |
| abstract_inverted_index.of | 66, 73, 93, 108, 158, 188, 201, 218, 226, 254, 278, 288, 325, 359, 390 |
| abstract_inverted_index.on | 164 |
| abstract_inverted_index.or | 205 |
| abstract_inverted_index.to | 27, 120, 141, 147, 178, 197, 238, 300, 313 |
| abstract_inverted_index.SHM | 363 |
| abstract_inverted_index.The | 55, 306 |
| abstract_inverted_index.and | 49, 71, 104, 112, 144, 150, 174, 183, 268, 292, 298, 302, 321, 327, 331, 338, 346, 351, 368, 385, 393 |
| abstract_inverted_index.are | 1, 45, 79 |
| abstract_inverted_index.but | 68 |
| abstract_inverted_index.can | 96, 281 |
| abstract_inverted_index.due | 119 |
| abstract_inverted_index.for | 62, 90, 168, 195, 264, 294, 310, 348 |
| abstract_inverted_index.key | 3 |
| abstract_inverted_index.may | 41, 170, 193 |
| abstract_inverted_index.not | 51 |
| abstract_inverted_index.the | 63, 84, 121, 153, 156, 186, 221, 231, 245, 259, 286, 295, 370, 376, 381 |
| abstract_inverted_index.two | 382 |
| abstract_inverted_index.use | 157 |
| abstract_inverted_index.(DT) | 58 |
| abstract_inverted_index.DNNs | 290 |
| abstract_inverted_index.Deep | 159, 208 |
| abstract_inverted_index.This | 353 |
| abstract_inverted_index.With | 220 |
| abstract_inverted_index.data | 181, 269, 272 |
| abstract_inverted_index.deal | 133 |
| abstract_inverted_index.even | 22 |
| abstract_inverted_index.from | 234, 244 |
| abstract_inverted_index.have | 308 |
| abstract_inverted_index.help | 287 |
| abstract_inverted_index.last | 377 |
| abstract_inverted_index.more | 47, 81 |
| abstract_inverted_index.most | 371 |
| abstract_inverted_index.much | 80 |
| abstract_inverted_index.only | 99 |
| abstract_inverted_index.same | 154 |
| abstract_inverted_index.some | 311 |
| abstract_inverted_index.such | 37 |
| abstract_inverted_index.than | 53 |
| abstract_inverted_index.that | 44, 280 |
| abstract_inverted_index.this | 191 |
| abstract_inverted_index.tool | 177 |
| abstract_inverted_index.used | 263 |
| abstract_inverted_index.wave | 315 |
| abstract_inverted_index.will | 273 |
| abstract_inverted_index.with | 11, 31, 135, 285 |
| abstract_inverted_index."load | 143 |
| abstract_inverted_index.(SHM) | 131, 250 |
| abstract_inverted_index.about | 362 |
| abstract_inverted_index.aimed | 299, 342 |
| abstract_inverted_index.based | 163 |
| abstract_inverted_index.brief | 357 |
| abstract_inverted_index.could | 261 |
| abstract_inverted_index.dense | 337 |
| abstract_inverted_index.field | 187 |
| abstract_inverted_index.input | 235 |
| abstract_inverted_index.lead, | 194 |
| abstract_inverted_index.paper | 354 |
| abstract_inverted_index.safer | 9 |
| abstract_inverted_index.space | 236, 240 |
| abstract_inverted_index.still | 88 |
| abstract_inverted_index.tests | 320 |
| abstract_inverted_index.their | 125, 142 |
| abstract_inverted_index.these | 91 |
| abstract_inverted_index.time, | 155 |
| abstract_inverted_index.types | 92 |
| abstract_inverted_index.works | 361 |
| abstract_inverted_index.years | 312, 378 |
| abstract_inverted_index.(DNNs) | 162 |
| abstract_inverted_index.Health | 248 |
| abstract_inverted_index.Neural | 160 |
| abstract_inverted_index.alloys | 21 |
| abstract_inverted_index.amount | 277 |
| abstract_inverted_index.costly | 89 |
| abstract_inverted_index.damage | 56, 349 |
| abstract_inverted_index.design | 65 |
| abstract_inverted_index.during | 375 |
| abstract_inverted_index.events | 36 |
| abstract_inverted_index.faster | 180, 199 |
| abstract_inverted_index.future | 395 |
| abstract_inverted_index.groups | 384 |
| abstract_inverted_index.health | 129, 145 |
| abstract_inverted_index.higher | 29 |
| abstract_inverted_index.induce | 42 |
| abstract_inverted_index.learns | 230 |
| abstract_inverted_index.levels | 111, 217 |
| abstract_inverted_index.little | 13 |
| abstract_inverted_index.mainly | 134 |
| abstract_inverted_index.models | 324 |
| abstract_inverted_index.mostly | 50 |
| abstract_inverted_index.neural | 227, 340 |
| abstract_inverted_index.random | 35 |
| abstract_inverted_index.reduce | 148 |
| abstract_inverted_index.review | 358 |
| abstract_inverted_index.signal | 344 |
| abstract_inverted_index.stress | 110 |
| abstract_inverted_index.target | 239 |
| abstract_inverted_index.(damage | 241 |
| abstract_inverted_index.(mainly | 336 |
| abstract_inverted_index.Machine | 365 |
| abstract_inverted_index.achieve | 28 |
| abstract_inverted_index.adopted | 61 |
| abstract_inverted_index.authors | 307 |
| abstract_inverted_index.collect | 314 |
| abstract_inverted_index.concern | 4 |
| abstract_inverted_index.context | 297 |
| abstract_inverted_index.damaged | 328 |
| abstract_inverted_index.damages | 43 |
| abstract_inverted_index.drastic | 106 |
| abstract_inverted_index.factors | 118 |
| abstract_inverted_index.failure | 74 |
| abstract_inverted_index.fatigue | 64 |
| abstract_inverted_index.feature | 213 |
| abstract_inverted_index.healthy | 326 |
| abstract_inverted_index.impacts | 40 |
| abstract_inverted_index.inverse | 232 |
| abstract_inverted_index.jointly | 379 |
| abstract_inverted_index.lighter | 32 |
| abstract_inverted_index.machine | 333 |
| abstract_inverted_index.mapping | 233 |
| abstract_inverted_index.metals. | 54 |
| abstract_inverted_index.network | 253 |
| abstract_inverted_index.predict | 206 |
| abstract_inverted_index.primary | 24 |
| abstract_inverted_index.promote | 179 |
| abstract_inverted_index.provide | 211 |
| abstract_inverted_index.related | 140 |
| abstract_inverted_index.results | 392 |
| abstract_inverted_index.sensors | 256 |
| abstract_inverted_index.signals | 139, 317 |
| abstract_inverted_index.status" | 146 |
| abstract_inverted_index.systems | 132 |
| abstract_inverted_index.testing | 103 |
| abstract_inverted_index.through | 100, 318 |
| abstract_inverted_index.trained | 293 |
| abstract_inverted_index.visible | 52 |
| abstract_inverted_index.However, | 34 |
| abstract_inverted_index.Learning | 366 |
| abstract_inverted_index.Networks | 161 |
| abstract_inverted_index.Starting | 243 |
| abstract_inverted_index.achieved | 98 |
| abstract_inverted_index.aircraft | 189 |
| abstract_inverted_index.aluminum | 20 |
| abstract_inverted_index.analysis | 176, 182, 347, 389 |
| abstract_inverted_index.applying | 116 |
| abstract_inverted_index.approach | 59, 86, 192 |
| abstract_inverted_index.classify | 301 |
| abstract_inverted_index.critical | 388 |
| abstract_inverted_index.designed | 291 |
| abstract_inverted_index.embedded | 257 |
| abstract_inverted_index.enormous | 276 |
| abstract_inverted_index.example, | 196 |
| abstract_inverted_index.filtered | 284 |
| abstract_inverted_index.fracture | 69 |
| abstract_inverted_index.function | 223 |
| abstract_inverted_index.identify | 303 |
| abstract_inverted_index.involved | 123 |
| abstract_inverted_index.learning | 334 |
| abstract_inverted_index.networks | 210 |
| abstract_inverted_index.obtained | 391 |
| abstract_inverted_index.original | 126 |
| abstract_inverted_index.presents | 355, 386 |
| abstract_inverted_index.property | 225 |
| abstract_inverted_index.relevant | 360 |
| abstract_inverted_index.replaced | 19 |
| abstract_inverted_index.research | 383 |
| abstract_inverted_index.specific | 289 |
| abstract_inverted_index.weights. | 151 |
| abstract_inverted_index.(signals) | 237 |
| abstract_inverted_index.Composite | 17 |
| abstract_inverted_index.aerospace | 6, 25 |
| abstract_inverted_index.aircraft, | 67 |
| abstract_inverted_index.allowable | 109 |
| abstract_inverted_index.automatic | 212 |
| abstract_inverted_index.awareness | 200 |
| abstract_inverted_index.classes). | 242 |
| abstract_inverted_index.composite | 77, 329 |
| abstract_inverted_index.criteria, | 167 |
| abstract_inverted_index.dangerous | 48 |
| abstract_inverted_index.detection | 350 |
| abstract_inverted_index.developed | 332, 374 |
| abstract_inverted_index.different | 216 |
| abstract_inverted_index.effective | 173 |
| abstract_inverted_index.efficient | 175 |
| abstract_inverted_index.employing | 364 |
| abstract_inverted_index.expensive | 101 |
| abstract_inverted_index.failures. | 207 |
| abstract_inverted_index.instance, | 169 |
| abstract_inverted_index.intervals | 114 |
| abstract_inverted_index.materials | 18 |
| abstract_inverted_index.networks) | 341 |
| abstract_inverted_index.networks, | 228 |
| abstract_inverted_index.numerical | 323 |
| abstract_inverted_index.possible. | 16 |
| abstract_inverted_index.promising | 372 |
| abstract_inverted_index.providing | 138 |
| abstract_inverted_index.real-time | 265 |
| abstract_inverted_index.reduction | 107 |
| abstract_inverted_index.represent | 171 |
| abstract_inverted_index.requiring | 8 |
| abstract_inverted_index.situation | 204 |
| abstract_inverted_index.strategic | 165 |
| abstract_inverted_index.structure | 260 |
| abstract_inverted_index.tolerance | 57 |
| abstract_inverted_index.typically | 46 |
| abstract_inverted_index.universal | 222 |
| abstract_inverted_index.validated | 322 |
| abstract_inverted_index.vehicles, | 7 |
| abstract_inverted_index.Monitoring | 249 |
| abstract_inverted_index.Structural | 128, 247, 271 |
| abstract_inverted_index.adequately | 283 |
| abstract_inverted_index.algorithms | 335 |
| abstract_inverted_index.approaches | 373 |
| abstract_inverted_index.constitute | 274 |
| abstract_inverted_index.extraction | 214 |
| abstract_inverted_index.mechanisms | 70 |
| abstract_inverted_index.monitoring | 130, 267 |
| abstract_inverted_index.prediction | 75 |
| abstract_inverted_index.scattering | 117 |
| abstract_inverted_index.sensorised | 136 |
| abstract_inverted_index.structural | 266, 296 |
| abstract_inverted_index.structures | 10, 26, 78, 137 |
| abstract_inverted_index.subsequent | 394 |
| abstract_inverted_index.summarizes | 369 |
| abstract_inverted_index.throughout | 258 |
| abstract_inverted_index.activities. | 396 |
| abstract_inverted_index.components. | 33 |
| abstract_inverted_index.consumption | 14 |
| abstract_inverted_index.distributed | 255 |
| abstract_inverted_index.engineering | 166 |
| abstract_inverted_index.information | 279 |
| abstract_inverted_index.maintenance | 113, 149 |
| abstract_inverted_index.parameters. | 305 |
| abstract_inverted_index.propagation | 72, 316 |
| abstract_inverted_index.significant | 304 |
| abstract_inverted_index.structures, | 330 |
| abstract_inverted_index.structures. | 94 |
| abstract_inverted_index.Performances | 0 |
| abstract_inverted_index.abstraction. | 219 |
| abstract_inverted_index.acquisition. | 270 |
| abstract_inverted_index.challenging. | 82 |
| abstract_inverted_index.collaborated | 309 |
| abstract_inverted_index.estimations. | 127 |
| abstract_inverted_index.experimental | 102, 319 |
| abstract_inverted_index.low-velocity | 39 |
| abstract_inverted_index.maintenance, | 190 |
| abstract_inverted_index.performances | 30 |
| abstract_inverted_index.Consequently, | 83 |
| abstract_inverted_index.approximation | 224 |
| abstract_inverted_index.convolutional | 339 |
| abstract_inverted_index.localization. | 352 |
| abstract_inverted_index.methodologies | 367 |
| abstract_inverted_index.technologies, | 251 |
| abstract_inverted_index.uncertainties | 122 |
| abstract_inverted_index.aircraft/fleet | 203 |
| abstract_inverted_index.classification | 345 |
| abstract_inverted_index.learning-based | 209 |
| abstract_inverted_index.classification. | 184 |
| abstract_inverted_index.well-established | 246 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5078035609 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I71267560 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.4000000059604645 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.97573913 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |