Machine learning applied to multifrequency data in astrophysics: blazar classification Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1093/mnras/staa2449
The study of machine learning (ML) techniques for the autonomous classification of astrophysical sources is of great interest, and we explore its applications in the context of a multifrequency data-frame. We test the use of supervised ML to classify blazars according to its synchrotron peak frequency, either lower or higher than 1015 Hz. We select a sample with 4178 blazars labelled as 1279 high synchrotron peak (HSP: $\rm \nu$-peak > 1015 Hz) and 2899 low synchrotron peak (LSP: $\rm \nu$-peak < 1015 Hz). A set of multifrequency features were defined to represent each source that includes spectral slopes ($\alpha _{\nu _1, \nu _2}$) between the radio, infra-red, optical, and X-ray bands, also considering IR colours. We describe the optimization of five ML classification algorithms that classify blazars into LSP or HSP: Random forests (RFs), support vector machine (SVM), K-nearest neighbours (KNN), Gaussian Naive Bayes (GNB), and the Ludwig auto-ML framework. In our particular case, the SVM algorithm had the best performance, reaching 93 per cent of balanced accuracy. A joint-feature permutation test revealed that the spectral slopes alpha-radio-infrared (IR) and alpha-radio-optical are the most relevant for the ML modelling, followed by the IR colours. This work shows that ML algorithms can distinguish multifrequency spectral characteristics and handle the classification of blazars into LSPs and HSPs. It is a hint for the potential use of ML for the autonomous determination of broadband spectral parameters (as the synchrotron ν-peak), or even to search for new blazars in all-sky data bases.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/mnras/staa2449
- OA Status
- green
- Cited By
- 13
- References
- 86
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3021692095
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3021692095Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/mnras/staa2449Digital Object Identifier
- Title
-
Machine learning applied to multifrequency data in astrophysics: blazar classificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-13Full publication date if available
- Authors
-
B. Arsioli, Pedro Dedin NetoList of authors in order
- Landing page
-
https://doi.org/10.1093/mnras/staa2449Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2005.03536Direct OA link when available
- Concepts
-
Blazar, Physics, Astrophysics, Synchrotron, Support vector machine, Random forest, Context (archaeology), Active galactic nucleus, Algorithm, Artificial intelligence, Optics, Computer science, Galaxy, Gamma ray, Biology, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 4, 2022: 6, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
86Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3021692095 |
|---|---|
| doi | https://doi.org/10.1093/mnras/staa2449 |
| ids.doi | https://doi.org/10.1093/mnras/staa2449 |
| ids.mag | 3021692095 |
| ids.openalex | https://openalex.org/W3021692095 |
| fwci | 1.74742691 |
| type | article |
| title | Machine learning applied to multifrequency data in astrophysics: blazar classification |
| awards[0].id | https://openalex.org/G663321102 |
| awards[0].funder_id | https://openalex.org/F4320320997 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2017/00517-4 |
| awards[0].funder_display_name | Fundação de Amparo à Pesquisa do Estado de São Paulo |
| awards[1].id | https://openalex.org/G3428009424 |
| awards[1].funder_id | https://openalex.org/F4320320997 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2019/08956-2 |
| awards[1].funder_display_name | Fundação de Amparo à Pesquisa do Estado de São Paulo |
| biblio.issue | 2 |
| biblio.volume | 498 |
| biblio.last_page | 1764 |
| biblio.first_page | 1750 |
| topics[0].id | https://openalex.org/T10818 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3106 |
| topics[0].subfield.display_name | Nuclear and High Energy Physics |
| topics[0].display_name | Astrophysics and Cosmic Phenomena |
| topics[1].id | https://openalex.org/T12450 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9941999912261963 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3103 |
| topics[1].subfield.display_name | Astronomy and Astrophysics |
| topics[1].display_name | Radio Astronomy Observations and Technology |
| topics[2].id | https://openalex.org/T10921 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9853000044822693 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3106 |
| topics[2].subfield.display_name | Nuclear and High Energy Physics |
| topics[2].display_name | Neutrino Physics Research |
| funders[0].id | https://openalex.org/F4320320997 |
| funders[0].ror | https://ror.org/02ddkpn78 |
| funders[0].display_name | Fundação de Amparo à Pesquisa do Estado de São Paulo |
| is_xpac | False |
| apc_list.value | 2310 |
| apc_list.currency | GBP |
| apc_list.value_usd | 2833 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C100752510 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9376116991043091 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q221221 |
| concepts[0].display_name | Blazar |
| concepts[1].id | https://openalex.org/C121332964 |
| concepts[1].level | 0 |
| concepts[1].score | 0.849794864654541 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[1].display_name | Physics |
| concepts[2].id | https://openalex.org/C44870925 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6587194204330444 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q37547 |
| concepts[2].display_name | Astrophysics |
| concepts[3].id | https://openalex.org/C21368211 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6494311690330505 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q689863 |
| concepts[3].display_name | Synchrotron |
| concepts[4].id | https://openalex.org/C12267149 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6394795179367065 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[4].display_name | Support vector machine |
| concepts[5].id | https://openalex.org/C169258074 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5771069526672363 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[5].display_name | Random forest |
| concepts[6].id | https://openalex.org/C2779343474 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5558609366416931 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[6].display_name | Context (archaeology) |
| concepts[7].id | https://openalex.org/C43481613 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4707893431186676 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q46587 |
| concepts[7].display_name | Active galactic nucleus |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35985809564590454 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.34666353464126587 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C120665830 |
| concepts[10].level | 1 |
| concepts[10].score | 0.15976664423942566 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[10].display_name | Optics |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.15490224957466125 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C98444146 |
| concepts[12].level | 2 |
| concepts[12].score | 0.09825336933135986 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q318 |
| concepts[12].display_name | Galaxy |
| concepts[13].id | https://openalex.org/C7910260 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11523 |
| concepts[13].display_name | Gamma ray |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C151730666 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[15].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/blazar |
| keywords[0].score | 0.9376116991043091 |
| keywords[0].display_name | Blazar |
| keywords[1].id | https://openalex.org/keywords/physics |
| keywords[1].score | 0.849794864654541 |
| keywords[1].display_name | Physics |
| keywords[2].id | https://openalex.org/keywords/astrophysics |
| keywords[2].score | 0.6587194204330444 |
| keywords[2].display_name | Astrophysics |
| keywords[3].id | https://openalex.org/keywords/synchrotron |
| keywords[3].score | 0.6494311690330505 |
| keywords[3].display_name | Synchrotron |
| keywords[4].id | https://openalex.org/keywords/support-vector-machine |
| keywords[4].score | 0.6394795179367065 |
| keywords[4].display_name | Support vector machine |
| keywords[5].id | https://openalex.org/keywords/random-forest |
| keywords[5].score | 0.5771069526672363 |
| keywords[5].display_name | Random forest |
| keywords[6].id | https://openalex.org/keywords/context |
| keywords[6].score | 0.5558609366416931 |
| keywords[6].display_name | Context (archaeology) |
| keywords[7].id | https://openalex.org/keywords/active-galactic-nucleus |
| keywords[7].score | 0.4707893431186676 |
| keywords[7].display_name | Active galactic nucleus |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.35985809564590454 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.34666353464126587 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/optics |
| keywords[10].score | 0.15976664423942566 |
| keywords[10].display_name | Optics |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.15490224957466125 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/galaxy |
| keywords[12].score | 0.09825336933135986 |
| keywords[12].display_name | Galaxy |
| language | en |
| locations[0].id | doi:10.1093/mnras/staa2449 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S195663288 |
| locations[0].source.issn | 0035-8711, 1365-2966, 1365-8711 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0035-8711 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Monthly Notices of the Royal Astronomical Society |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Monthly Notices of the Royal Astronomical Society |
| locations[0].landing_page_url | https://doi.org/10.1093/mnras/staa2449 |
| locations[1].id | pmh:oai:arXiv.org:2005.03536 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2005.03536 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2005.03536 |
| indexed_in | arxiv, crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5037578738 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8166-6602 |
| authorships[0].author.display_name | B. Arsioli |
| authorships[0].countries | BR, IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210122452 |
| authorships[0].affiliations[0].raw_affiliation_string | ICRANet, P.zza della Repubblica 10, I-65122 Pescara, Italy |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I181391015 |
| authorships[0].affiliations[1].raw_affiliation_string | Gleb Wataghin Physics Institute, Unicamp, Rua S. Buarque de Holanda 777, 13083-859 Campinas, Brazil |
| authorships[0].institutions[0].id | https://openalex.org/I181391015 |
| authorships[0].institutions[0].ror | https://ror.org/04wffgt70 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I181391015 |
| authorships[0].institutions[0].country_code | BR |
| authorships[0].institutions[0].display_name | Universidade Estadual de Campinas (UNICAMP) |
| authorships[0].institutions[1].id | https://openalex.org/I4210122452 |
| authorships[0].institutions[1].ror | https://ror.org/02jktn113 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210122452 |
| authorships[0].institutions[1].country_code | IT |
| authorships[0].institutions[1].display_name | International Center for Relativistic Astrophysics |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | B Arsioli |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Gleb Wataghin Physics Institute, Unicamp, Rua S. Buarque de Holanda 777, 13083-859 Campinas, Brazil, ICRANet, P.zza della Repubblica 10, I-65122 Pescara, Italy |
| authorships[1].author.id | https://openalex.org/A5072555621 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1831-3801 |
| authorships[1].author.display_name | Pedro Dedin Neto |
| authorships[1].countries | BR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I181391015 |
| authorships[1].affiliations[0].raw_affiliation_string | Gleb Wataghin Physics Institute, Unicamp, Rua S. Buarque de Holanda 777, 13083-859 Campinas, Brazil |
| authorships[1].institutions[0].id | https://openalex.org/I181391015 |
| authorships[1].institutions[0].ror | https://ror.org/04wffgt70 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I181391015 |
| authorships[1].institutions[0].country_code | BR |
| authorships[1].institutions[0].display_name | Universidade Estadual de Campinas (UNICAMP) |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | P Dedin |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Gleb Wataghin Physics Institute, Unicamp, Rua S. Buarque de Holanda 777, 13083-859 Campinas, Brazil |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2005.03536 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine learning applied to multifrequency data in astrophysics: blazar classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10818 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3106 |
| primary_topic.subfield.display_name | Nuclear and High Energy Physics |
| primary_topic.display_name | Astrophysics and Cosmic Phenomena |
| related_works | https://openalex.org/W2962750392, https://openalex.org/W2146425484, https://openalex.org/W4200112873, https://openalex.org/W3131126014, https://openalex.org/W2955796858, https://openalex.org/W4224941037, https://openalex.org/W1725690620, https://openalex.org/W4300103463, https://openalex.org/W2994107254, https://openalex.org/W1489919466 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2005.03536 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2005.03536 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2005.03536 |
| primary_location.id | doi:10.1093/mnras/staa2449 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S195663288 |
| primary_location.source.issn | 0035-8711, 1365-2966, 1365-8711 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0035-8711 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Monthly Notices of the Royal Astronomical Society |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Monthly Notices of the Royal Astronomical Society |
| primary_location.landing_page_url | https://doi.org/10.1093/mnras/staa2449 |
| publication_date | 2020-08-13 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2135101687, https://openalex.org/W3027520426, https://openalex.org/W2951590468, https://openalex.org/W2735285350, https://openalex.org/W1943306457, https://openalex.org/W2950833766, https://openalex.org/W4289728885, https://openalex.org/W1877811449, https://openalex.org/W3143721617, https://openalex.org/W2899864468, https://openalex.org/W2119936234, https://openalex.org/W1995745909, https://openalex.org/W2309133735, https://openalex.org/W2084341220, https://openalex.org/W2911964244, https://openalex.org/W2101807845, https://openalex.org/W2523749072, https://openalex.org/W2974485248, https://openalex.org/W2148143831, https://openalex.org/W2480428645, https://openalex.org/W1966667130, https://openalex.org/W4239510810, https://openalex.org/W2022188063, https://openalex.org/W1970840956, https://openalex.org/W2084069303, https://openalex.org/W2135126915, https://openalex.org/W2798336535, https://openalex.org/W4231019546, https://openalex.org/W1943085957, https://openalex.org/W2149714711, https://openalex.org/W2077947153, https://openalex.org/W2046689939, https://openalex.org/W2257919992, https://openalex.org/W2917852464, https://openalex.org/W2156689933, https://openalex.org/W3007561154, https://openalex.org/W2626230259, https://openalex.org/W2049866079, https://openalex.org/W2129197347, https://openalex.org/W2166897975, https://openalex.org/W2077088937, https://openalex.org/W2524018117, https://openalex.org/W6632865047, https://openalex.org/W1926061226, https://openalex.org/W2162492486, https://openalex.org/W1749317873, https://openalex.org/W2123564746, https://openalex.org/W2737163388, https://openalex.org/W1968791556, https://openalex.org/W4300767505, https://openalex.org/W2799462250, https://openalex.org/W3122365476, https://openalex.org/W2950307153, https://openalex.org/W1875061881, https://openalex.org/W1979115990, https://openalex.org/W2112028701, https://openalex.org/W2057778465, https://openalex.org/W1989158958, https://openalex.org/W2592740424, https://openalex.org/W2119821739, https://openalex.org/W3005347330, https://openalex.org/W3101573897, https://openalex.org/W2487799849, https://openalex.org/W1550206324, https://openalex.org/W1811859202, https://openalex.org/W3100575885, https://openalex.org/W2913251325, https://openalex.org/W3105665008, https://openalex.org/W2973400721, https://openalex.org/W3038064033, https://openalex.org/W3200318002, https://openalex.org/W3101777138, https://openalex.org/W3103619846, https://openalex.org/W3100420319, https://openalex.org/W3104025419, https://openalex.org/W2439568532, https://openalex.org/W2803435946, https://openalex.org/W3100111138, https://openalex.org/W2101234009, https://openalex.org/W3105240173, https://openalex.org/W3104968552, https://openalex.org/W3124452992, https://openalex.org/W3105535499, https://openalex.org/W3121714128, https://openalex.org/W3104739007, https://openalex.org/W3105103310 |
| referenced_works_count | 86 |
| abstract_inverted_index.A | 84, 169 |
| abstract_inverted_index.a | 28, 56, 218 |
| abstract_inverted_index.93 | 163 |
| abstract_inverted_index.IR | 114, 193 |
| abstract_inverted_index.In | 151 |
| abstract_inverted_index.It | 216 |
| abstract_inverted_index.ML | 37, 122, 188, 199, 225 |
| abstract_inverted_index.We | 31, 54, 116 |
| abstract_inverted_index.as | 62 |
| abstract_inverted_index.by | 191 |
| abstract_inverted_index.in | 24, 245 |
| abstract_inverted_index.is | 15, 217 |
| abstract_inverted_index.of | 3, 12, 16, 27, 35, 86, 120, 166, 210, 224, 230 |
| abstract_inverted_index.or | 49, 130, 238 |
| abstract_inverted_index.to | 38, 42, 91, 240 |
| abstract_inverted_index.we | 20 |
| abstract_inverted_index.(as | 234 |
| abstract_inverted_index.Hz) | 72 |
| abstract_inverted_index.Hz. | 53 |
| abstract_inverted_index.LSP | 129 |
| abstract_inverted_index.SVM | 156 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.\nu | 102 |
| abstract_inverted_index._1, | 101 |
| abstract_inverted_index.and | 19, 73, 109, 146, 180, 206, 214 |
| abstract_inverted_index.are | 182 |
| abstract_inverted_index.can | 201 |
| abstract_inverted_index.for | 8, 186, 220, 226, 242 |
| abstract_inverted_index.had | 158 |
| abstract_inverted_index.its | 22, 43 |
| abstract_inverted_index.low | 75 |
| abstract_inverted_index.new | 243 |
| abstract_inverted_index.our | 152 |
| abstract_inverted_index.per | 164 |
| abstract_inverted_index.set | 85 |
| abstract_inverted_index.the | 9, 25, 33, 105, 118, 147, 155, 159, 175, 183, 187, 192, 208, 221, 227, 235 |
| abstract_inverted_index.use | 34, 223 |
| abstract_inverted_index.$\rm | 68, 79 |
| abstract_inverted_index.(IR) | 179 |
| abstract_inverted_index.(ML) | 6 |
| abstract_inverted_index.1015 | 52, 71, 82 |
| abstract_inverted_index.1279 | 63 |
| abstract_inverted_index.2899 | 74 |
| abstract_inverted_index.4178 | 59 |
| abstract_inverted_index.HSP: | 131 |
| abstract_inverted_index.Hz). | 83 |
| abstract_inverted_index.LSPs | 213 |
| abstract_inverted_index.This | 195 |
| abstract_inverted_index.also | 112 |
| abstract_inverted_index.best | 160 |
| abstract_inverted_index.cent | 165 |
| abstract_inverted_index.data | 247 |
| abstract_inverted_index.each | 93 |
| abstract_inverted_index.even | 239 |
| abstract_inverted_index.five | 121 |
| abstract_inverted_index.high | 64 |
| abstract_inverted_index.hint | 219 |
| abstract_inverted_index.into | 128, 212 |
| abstract_inverted_index.most | 184 |
| abstract_inverted_index.peak | 45, 66, 77 |
| abstract_inverted_index.test | 32, 172 |
| abstract_inverted_index.than | 51 |
| abstract_inverted_index.that | 95, 125, 174, 198 |
| abstract_inverted_index.were | 89 |
| abstract_inverted_index.with | 58 |
| abstract_inverted_index.work | 196 |
| abstract_inverted_index.(HSP: | 67 |
| abstract_inverted_index.(LSP: | 78 |
| abstract_inverted_index.Bayes | 144 |
| abstract_inverted_index.HSPs. | 215 |
| abstract_inverted_index.Naive | 143 |
| abstract_inverted_index.X-ray | 110 |
| abstract_inverted_index._2}$) | 103 |
| abstract_inverted_index._{\nu | 100 |
| abstract_inverted_index.case, | 154 |
| abstract_inverted_index.great | 17 |
| abstract_inverted_index.lower | 48 |
| abstract_inverted_index.shows | 197 |
| abstract_inverted_index.study | 2 |
| abstract_inverted_index.(GNB), | 145 |
| abstract_inverted_index.(KNN), | 141 |
| abstract_inverted_index.(RFs), | 134 |
| abstract_inverted_index.(SVM), | 138 |
| abstract_inverted_index.Ludwig | 148 |
| abstract_inverted_index.Random | 132 |
| abstract_inverted_index.bands, | 111 |
| abstract_inverted_index.bases. | 248 |
| abstract_inverted_index.either | 47 |
| abstract_inverted_index.handle | 207 |
| abstract_inverted_index.higher | 50 |
| abstract_inverted_index.radio, | 106 |
| abstract_inverted_index.sample | 57 |
| abstract_inverted_index.search | 241 |
| abstract_inverted_index.select | 55 |
| abstract_inverted_index.slopes | 98, 177 |
| abstract_inverted_index.source | 94 |
| abstract_inverted_index.vector | 136 |
| abstract_inverted_index.all-sky | 246 |
| abstract_inverted_index.auto-ML | 149 |
| abstract_inverted_index.between | 104 |
| abstract_inverted_index.blazars | 40, 60, 127, 211, 244 |
| abstract_inverted_index.context | 26 |
| abstract_inverted_index.defined | 90 |
| abstract_inverted_index.explore | 21 |
| abstract_inverted_index.forests | 133 |
| abstract_inverted_index.machine | 4, 137 |
| abstract_inverted_index.sources | 14 |
| abstract_inverted_index.support | 135 |
| abstract_inverted_index.&gt; | 70 |
| abstract_inverted_index.&lt; | 81 |
| abstract_inverted_index.($\alpha | 99 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Gaussian | 142 |
| abstract_inverted_index.balanced | 167 |
| abstract_inverted_index.classify | 39, 126 |
| abstract_inverted_index.colours. | 115, 194 |
| abstract_inverted_index.describe | 117 |
| abstract_inverted_index.features | 88 |
| abstract_inverted_index.followed | 190 |
| abstract_inverted_index.includes | 96 |
| abstract_inverted_index.labelled | 61 |
| abstract_inverted_index.learning | 5 |
| abstract_inverted_index.optical, | 108 |
| abstract_inverted_index.reaching | 162 |
| abstract_inverted_index.relevant | 185 |
| abstract_inverted_index.revealed | 173 |
| abstract_inverted_index.spectral | 97, 176, 204, 232 |
| abstract_inverted_index.K-nearest | 139 |
| abstract_inverted_index.\nu$-peak | 69, 80 |
| abstract_inverted_index.according | 41 |
| abstract_inverted_index.accuracy. | 168 |
| abstract_inverted_index.algorithm | 157 |
| abstract_inverted_index.broadband | 231 |
| abstract_inverted_index.interest, | 18 |
| abstract_inverted_index.potential | 222 |
| abstract_inverted_index.represent | 92 |
| abstract_inverted_index.ν-peak), | 237 |
| abstract_inverted_index.algorithms | 124, 200 |
| abstract_inverted_index.autonomous | 10, 228 |
| abstract_inverted_index.framework. | 150 |
| abstract_inverted_index.frequency, | 46 |
| abstract_inverted_index.infra-red, | 107 |
| abstract_inverted_index.modelling, | 189 |
| abstract_inverted_index.neighbours | 140 |
| abstract_inverted_index.parameters | 233 |
| abstract_inverted_index.particular | 153 |
| abstract_inverted_index.supervised | 36 |
| abstract_inverted_index.techniques | 7 |
| abstract_inverted_index.considering | 113 |
| abstract_inverted_index.data-frame. | 30 |
| abstract_inverted_index.distinguish | 202 |
| abstract_inverted_index.permutation | 171 |
| abstract_inverted_index.synchrotron | 44, 65, 76, 236 |
| abstract_inverted_index.applications | 23 |
| abstract_inverted_index.optimization | 119 |
| abstract_inverted_index.performance, | 161 |
| abstract_inverted_index.astrophysical | 13 |
| abstract_inverted_index.determination | 229 |
| abstract_inverted_index.joint-feature | 170 |
| abstract_inverted_index.classification | 11, 123, 209 |
| abstract_inverted_index.multifrequency | 29, 87, 203 |
| abstract_inverted_index.characteristics | 205 |
| abstract_inverted_index.alpha-radio-optical | 181 |
| abstract_inverted_index.alpha-radio-infrared | 178 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5037578738, https://openalex.org/A5072555621 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I181391015, https://openalex.org/I4210122452 |
| citation_normalized_percentile.value | 0.94960358 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |