Machine learning approach to stratify complex heterogeneity of chronic heart failure: A report from the CHART‐2 study Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1002/ehf2.14288
Aims Current approaches to classify chronic heart failure (HF) subpopulations may be limited due to the diversity of pathophysiology and co‐morbidities in chronic HF. We aimed to elucidate the clusters of chronic patients with HF by data‐driven approaches with machine learning in a hospital‐based registry. Methods and results A total of 4649 patients with a broad spectrum of left ventricular ejection fraction (LVEF) in the CHART‐2 (Chronic Heart Failure Analysis and Registry in the Tohoku District‐2) study were enrolled to this study. Chronic HF patients were classified using random forest clustering with 56 multiscale clinical parameters. We assessed the influence of the clusters on cardiovascular death, non‐cardiovascular death, all‐cause death, and free from hospitalization by HF. Latent class analysis using random forest clustering identified 10 clusters with four primary components: cardiac function (LVEF, left atrial and ventricular diameters, diastolic blood pressure, and brain natriuretic peptide), renal function (glomerular filtration rate and blood urea nitrogen), anaemia (red blood cell, haematocrit, haemoglobin, and platelet count), and nutrition (albumin and body mass index). All 11 significant clinical parameters in the four primary components and two disease aetiologies (ischaemic heart disease and valvular heart disease) showed statistically significant differences among the 10 clusters ( P < 0.01). Cluster 1 (26.7% of patients), which is characterized by preserved LVEF (<59%, 37% of the total) with lowest brain natriuretic peptide (>111.3 pg/mL, 0.9%) and lowest left atrial diameter (>42 mm, 37.4%), showed the best 5 year survival rate of 98.1% for cardiovascular death, 95.9% for non‐cardiovascular death, 92.9% for all‐cause death, and 91.7% for free from hospitalization by HF. Cluster 10 (6.0% of the total), which is co‐morbid disorders of all four primary components, showed the worst survival rate of 39.1% for cardiovascular death, 68.9% for non‐cardiovascular death, 23.9% for all‐cause death, and 28.1% for free from hospitalization by HF. Conclusions These results suggest the potential applicability of the machine leaning approach, providing useful clinical prognostic information to stratify complex heterogeneity in patients with HF.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/ehf2.14288
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ehf2.14288
- OA Status
- gold
- Cited By
- 16
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4320857308
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4320857308Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/ehf2.14288Digital Object Identifier
- Title
-
Machine learning approach to stratify complex heterogeneity of chronic heart failure: A report from the CHART‐2 studyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-14Full publication date if available
- Authors
-
Kenji Nakano, Kotaro Nochioka, Satoshi Yasuda, Daito Tamori, Takashi Shiroto, Yudai Sato, Eichi Takaya, Satoshi Miyata, Eiryo Kawakami, Tetsuo Ishikawa, Takuya Ueda, Hiroaki ShimokawaList of authors in order
- Landing page
-
https://doi.org/10.1002/ehf2.14288Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ehf2.14288Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ehf2.14288Direct OA link when available
- Concepts
-
Medicine, Heart failure, Ejection fraction, Cardiology, Internal medicine, Blood urea nitrogen, Renal function, Blood pressure, Kidney disease, Brain natriuretic peptideTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 7, 2023: 5Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4320857308 |
|---|---|
| doi | https://doi.org/10.1002/ehf2.14288 |
| ids.doi | https://doi.org/10.1002/ehf2.14288 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36788745 |
| ids.openalex | https://openalex.org/W4320857308 |
| fwci | 5.37147007 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000502 |
| mesh[1].descriptor_ui | D013318 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | physiology |
| mesh[1].descriptor_name | Stroke Volume |
| mesh[2].qualifier_ui | Q000502 |
| mesh[2].descriptor_ui | D016277 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | physiology |
| mesh[2].descriptor_name | Ventricular Function, Left |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D020097 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Natriuretic Peptide, Brain |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D001281 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Atrial Fibrillation |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D006333 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Heart Failure |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D002908 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Chronic Disease |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000069550 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Machine Learning |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006801 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Humans |
| mesh[9].qualifier_ui | Q000502 |
| mesh[9].descriptor_ui | D013318 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | physiology |
| mesh[9].descriptor_name | Stroke Volume |
| mesh[10].qualifier_ui | Q000502 |
| mesh[10].descriptor_ui | D016277 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | physiology |
| mesh[10].descriptor_name | Ventricular Function, Left |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D020097 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Natriuretic Peptide, Brain |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D001281 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Atrial Fibrillation |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D006333 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Heart Failure |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D002908 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Chronic Disease |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000069550 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Machine Learning |
| type | article |
| title | Machine learning approach to stratify complex heterogeneity of chronic heart failure: A report from the CHART‐2 study |
| awards[0].id | https://openalex.org/G1309973695 |
| awards[0].funder_id | https://openalex.org/F4320334764 |
| awards[0].display_name | |
| awards[0].funder_award_id | JP20K21837 |
| awards[0].funder_display_name | Japan Society for the Promotion of Science |
| awards[1].id | https://openalex.org/G931549071 |
| awards[1].funder_id | https://openalex.org/F4320311405 |
| awards[1].display_name | |
| awards[1].funder_award_id | 22ek0109543h0002 |
| awards[1].funder_display_name | Japan Agency for Medical Research and Development |
| awards[2].id | https://openalex.org/G5340357149 |
| awards[2].funder_id | https://openalex.org/F4320311405 |
| awards[2].display_name | |
| awards[2].funder_award_id | 22ek0210136h0003 |
| awards[2].funder_display_name | Japan Agency for Medical Research and Development |
| biblio.issue | 3 |
| biblio.volume | 10 |
| biblio.last_page | 1604 |
| biblio.first_page | 1597 |
| topics[0].id | https://openalex.org/T10198 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | Heart Failure Treatment and Management |
| topics[1].id | https://openalex.org/T10821 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Cardiovascular Function and Risk Factors |
| topics[2].id | https://openalex.org/T10401 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9976000189781189 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2712 |
| topics[2].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[2].display_name | Diabetes Treatment and Management |
| funders[0].id | https://openalex.org/F4320311405 |
| funders[0].ror | https://ror.org/004rtk039 |
| funders[0].display_name | Japan Agency for Medical Research and Development |
| funders[1].id | https://openalex.org/F4320334764 |
| funders[1].ror | https://ror.org/00hhkn466 |
| funders[1].display_name | Japan Society for the Promotion of Science |
| is_xpac | False |
| apc_list.value | 3150 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3366 |
| apc_paid.value | 3150 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3366 |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8835756778717041 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C2778198053 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8316450715065002 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q181754 |
| concepts[1].display_name | Heart failure |
| concepts[2].id | https://openalex.org/C78085059 |
| concepts[2].level | 3 |
| concepts[2].score | 0.8152656555175781 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q641303 |
| concepts[2].display_name | Ejection fraction |
| concepts[3].id | https://openalex.org/C164705383 |
| concepts[3].level | 1 |
| concepts[3].score | 0.7640445232391357 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[3].display_name | Cardiology |
| concepts[4].id | https://openalex.org/C126322002 |
| concepts[4].level | 1 |
| concepts[4].score | 0.7467389702796936 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[4].display_name | Internal medicine |
| concepts[5].id | https://openalex.org/C2778176769 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5279777646064758 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q764079 |
| concepts[5].display_name | Blood urea nitrogen |
| concepts[6].id | https://openalex.org/C159641895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5042077302932739 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q108377937 |
| concepts[6].display_name | Renal function |
| concepts[7].id | https://openalex.org/C84393581 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4312475621700287 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q82642 |
| concepts[7].display_name | Blood pressure |
| concepts[8].id | https://openalex.org/C2778653478 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42471253871917725 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1054718 |
| concepts[8].display_name | Kidney disease |
| concepts[9].id | https://openalex.org/C2775846464 |
| concepts[9].level | 3 |
| concepts[9].score | 0.41237324476242065 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q66360952 |
| concepts[9].display_name | Brain natriuretic peptide |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.8835756778717041 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/heart-failure |
| keywords[1].score | 0.8316450715065002 |
| keywords[1].display_name | Heart failure |
| keywords[2].id | https://openalex.org/keywords/ejection-fraction |
| keywords[2].score | 0.8152656555175781 |
| keywords[2].display_name | Ejection fraction |
| keywords[3].id | https://openalex.org/keywords/cardiology |
| keywords[3].score | 0.7640445232391357 |
| keywords[3].display_name | Cardiology |
| keywords[4].id | https://openalex.org/keywords/internal-medicine |
| keywords[4].score | 0.7467389702796936 |
| keywords[4].display_name | Internal medicine |
| keywords[5].id | https://openalex.org/keywords/blood-urea-nitrogen |
| keywords[5].score | 0.5279777646064758 |
| keywords[5].display_name | Blood urea nitrogen |
| keywords[6].id | https://openalex.org/keywords/renal-function |
| keywords[6].score | 0.5042077302932739 |
| keywords[6].display_name | Renal function |
| keywords[7].id | https://openalex.org/keywords/blood-pressure |
| keywords[7].score | 0.4312475621700287 |
| keywords[7].display_name | Blood pressure |
| keywords[8].id | https://openalex.org/keywords/kidney-disease |
| keywords[8].score | 0.42471253871917725 |
| keywords[8].display_name | Kidney disease |
| keywords[9].id | https://openalex.org/keywords/brain-natriuretic-peptide |
| keywords[9].score | 0.41237324476242065 |
| keywords[9].display_name | Brain natriuretic peptide |
| language | en |
| locations[0].id | doi:10.1002/ehf2.14288 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764810254 |
| locations[0].source.issn | 2055-5822 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2055-5822 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | ESC Heart Failure |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ehf2.14288 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ESC Heart Failure |
| locations[0].landing_page_url | https://doi.org/10.1002/ehf2.14288 |
| locations[1].id | pmid:36788745 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | ESC heart failure |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36788745 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10192279 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by-nc-nd |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10192279/pdf/EHF2-10-1597.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | ESC Heart Fail |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10192279 |
| locations[3].id | pmh:oai:doaj.org/article:dc22020d47644ba383f2dc5e0c81f81c |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | ESC Heart Failure, Vol 10, Iss 3, Pp 1597-1604 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/dc22020d47644ba383f2dc5e0c81f81c |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5042477571 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Kenji Nakano |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I201537933 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Clinical Imaging, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I201537933 |
| authorships[0].institutions[0].ror | https://ror.org/01dq60k83 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I201537933 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Tohoku University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kenji Nakano |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Clinical Imaging, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[1].author.id | https://openalex.org/A5046553307 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8297-8624 |
| authorships[1].author.display_name | Kotaro Nochioka |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I201537933 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I201537933 |
| authorships[1].institutions[0].ror | https://ror.org/01dq60k83 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I201537933 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Tohoku University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kotaro Nochioka |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[2].author.id | https://openalex.org/A5087449813 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3694-1641 |
| authorships[2].author.display_name | Satoshi Yasuda |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I201537933 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I201537933 |
| authorships[2].institutions[0].ror | https://ror.org/01dq60k83 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I201537933 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Tohoku University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Satoshi Yasuda |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[3].author.id | https://openalex.org/A5009184406 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Daito Tamori |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I201537933 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Clinical Imaging, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I201537933 |
| authorships[3].institutions[0].ror | https://ror.org/01dq60k83 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I201537933 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | Tohoku University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Daito Tamori |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Clinical Imaging, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[4].author.id | https://openalex.org/A5091110999 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8957-6203 |
| authorships[4].author.display_name | Takashi Shiroto |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I201537933 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I201537933 |
| authorships[4].institutions[0].ror | https://ror.org/01dq60k83 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I201537933 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | Tohoku University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Takashi Shiroto |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[5].author.id | https://openalex.org/A5108769573 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Yudai Sato |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I201537933 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Clinical Imaging, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[5].institutions[0].id | https://openalex.org/I201537933 |
| authorships[5].institutions[0].ror | https://ror.org/01dq60k83 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I201537933 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | Tohoku University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yudai Sato |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Clinical Imaging, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[6].author.id | https://openalex.org/A5090819421 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2541-1685 |
| authorships[6].author.display_name | Eichi Takaya |
| authorships[6].countries | JP |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210093896 |
| authorships[6].affiliations[0].raw_affiliation_string | AI Lab, Tohoku University Hospital, Sendai, Japan |
| authorships[6].institutions[0].id | https://openalex.org/I4210093896 |
| authorships[6].institutions[0].ror | https://ror.org/00kcd6x60 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210093896 |
| authorships[6].institutions[0].country_code | JP |
| authorships[6].institutions[0].display_name | Tohoku University Hospital |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Eichi Takaya |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | AI Lab, Tohoku University Hospital, Sendai, Japan |
| authorships[7].author.id | https://openalex.org/A5021218765 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-2400-7525 |
| authorships[7].author.display_name | Satoshi Miyata |
| authorships[7].countries | JP |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I87531838 |
| authorships[7].affiliations[0].raw_affiliation_string | Teikyo University Graduate School of Public Health, Tokyo, Japan |
| authorships[7].institutions[0].id | https://openalex.org/I87531838 |
| authorships[7].institutions[0].ror | https://ror.org/01gaw2478 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I87531838 |
| authorships[7].institutions[0].country_code | JP |
| authorships[7].institutions[0].display_name | Teikyo University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Satoshi Miyata |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Teikyo University Graduate School of Public Health, Tokyo, Japan |
| authorships[8].author.id | https://openalex.org/A5036296341 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-9955-4342 |
| authorships[8].author.display_name | Eiryo Kawakami |
| authorships[8].countries | JP |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I159385669 |
| authorships[8].affiliations[0].raw_affiliation_string | Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I159385669 |
| authorships[8].affiliations[1].raw_affiliation_string | Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan |
| authorships[8].affiliations[2].raw_affiliation_string | Advanced Data Science Project (ADSP), RIKEN Information R&D and Strategy Headquarters Yokohama Japan |
| authorships[8].affiliations[3].institution_ids | https://openalex.org/I201537933 |
| authorships[8].affiliations[3].raw_affiliation_string | Department of Clinical Imaging, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[8].institutions[0].id | https://openalex.org/I159385669 |
| authorships[8].institutions[0].ror | https://ror.org/01hjzeq58 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I159385669 |
| authorships[8].institutions[0].country_code | JP |
| authorships[8].institutions[0].display_name | Chiba University |
| authorships[8].institutions[1].id | https://openalex.org/I201537933 |
| authorships[8].institutions[1].ror | https://ror.org/01dq60k83 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I201537933 |
| authorships[8].institutions[1].country_code | JP |
| authorships[8].institutions[1].display_name | Tohoku University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Eiryo Kawakami |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Advanced Data Science Project (ADSP), RIKEN Information R&D and Strategy Headquarters Yokohama Japan, Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan, Department of Clinical Imaging, Tohoku University Graduate School of Medicine, Sendai, Japan, Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan |
| authorships[9].author.id | https://openalex.org/A5027386400 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-5418-5387 |
| authorships[9].author.display_name | Tetsuo Ishikawa |
| authorships[9].countries | JP |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I203951103 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Tokyo, Japan |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I159385669 |
| authorships[9].affiliations[1].raw_affiliation_string | Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan |
| authorships[9].affiliations[2].institution_ids | https://openalex.org/I201537933 |
| authorships[9].affiliations[2].raw_affiliation_string | Department of Clinical Imaging, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[9].affiliations[3].raw_affiliation_string | Advanced Data Science Project (ADSP), RIKEN Information R&D and Strategy Headquarters Yokohama Japan |
| authorships[9].institutions[0].id | https://openalex.org/I159385669 |
| authorships[9].institutions[0].ror | https://ror.org/01hjzeq58 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I159385669 |
| authorships[9].institutions[0].country_code | JP |
| authorships[9].institutions[0].display_name | Chiba University |
| authorships[9].institutions[1].id | https://openalex.org/I203951103 |
| authorships[9].institutions[1].ror | https://ror.org/02kn6nx58 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I203951103 |
| authorships[9].institutions[1].country_code | JP |
| authorships[9].institutions[1].display_name | Keio University |
| authorships[9].institutions[2].id | https://openalex.org/I201537933 |
| authorships[9].institutions[2].ror | https://ror.org/01dq60k83 |
| authorships[9].institutions[2].type | education |
| authorships[9].institutions[2].lineage | https://openalex.org/I201537933 |
| authorships[9].institutions[2].country_code | JP |
| authorships[9].institutions[2].display_name | Tohoku University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Tetsuo Ishikawa |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Advanced Data Science Project (ADSP), RIKEN Information R&D and Strategy Headquarters Yokohama Japan, Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan, Department of Clinical Imaging, Tohoku University Graduate School of Medicine, Sendai, Japan, Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Tokyo, Japan |
| authorships[10].author.id | https://openalex.org/A5053830232 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-0913-5791 |
| authorships[10].author.display_name | Takuya Ueda |
| authorships[10].countries | JP |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I201537933 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Clinical Imaging, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[10].affiliations[1].institution_ids | https://openalex.org/I4210093896 |
| authorships[10].affiliations[1].raw_affiliation_string | AI Lab, Tohoku University Hospital, Sendai, Japan |
| authorships[10].institutions[0].id | https://openalex.org/I201537933 |
| authorships[10].institutions[0].ror | https://ror.org/01dq60k83 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I201537933 |
| authorships[10].institutions[0].country_code | JP |
| authorships[10].institutions[0].display_name | Tohoku University |
| authorships[10].institutions[1].id | https://openalex.org/I4210093896 |
| authorships[10].institutions[1].ror | https://ror.org/00kcd6x60 |
| authorships[10].institutions[1].type | healthcare |
| authorships[10].institutions[1].lineage | https://openalex.org/I4210093896 |
| authorships[10].institutions[1].country_code | JP |
| authorships[10].institutions[1].display_name | Tohoku University Hospital |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Takuya Ueda |
| authorships[10].is_corresponding | True |
| authorships[10].raw_affiliation_strings | AI Lab, Tohoku University Hospital, Sendai, Japan, Department of Clinical Imaging, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[11].author.id | https://openalex.org/A5012657143 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-7534-4826 |
| authorships[11].author.display_name | Hiroaki Shimokawa |
| authorships[11].countries | JP |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I79072001 |
| authorships[11].affiliations[0].raw_affiliation_string | International University of Health and Welfare, Otawara, Japan |
| authorships[11].affiliations[1].institution_ids | https://openalex.org/I201537933 |
| authorships[11].affiliations[1].raw_affiliation_string | Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan |
| authorships[11].institutions[0].id | https://openalex.org/I79072001 |
| authorships[11].institutions[0].ror | https://ror.org/053d3tv41 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I79072001 |
| authorships[11].institutions[0].country_code | JP |
| authorships[11].institutions[0].display_name | International University of Health and Welfare |
| authorships[11].institutions[1].id | https://openalex.org/I201537933 |
| authorships[11].institutions[1].ror | https://ror.org/01dq60k83 |
| authorships[11].institutions[1].type | education |
| authorships[11].institutions[1].lineage | https://openalex.org/I201537933 |
| authorships[11].institutions[1].country_code | JP |
| authorships[11].institutions[1].display_name | Tohoku University |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Hiroaki Shimokawa |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan, International University of Health and Welfare, Otawara, Japan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ehf2.14288 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine learning approach to stratify complex heterogeneity of chronic heart failure: A report from the CHART‐2 study |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10198 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | Heart Failure Treatment and Management |
| related_works | https://openalex.org/W2011390101, https://openalex.org/W4385397996, https://openalex.org/W3110630109, https://openalex.org/W3090392807, https://openalex.org/W4320929188, https://openalex.org/W1971368128, https://openalex.org/W2372950117, https://openalex.org/W2352486506, https://openalex.org/W2402983966, https://openalex.org/W2348199480 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1002/ehf2.14288 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764810254 |
| best_oa_location.source.issn | 2055-5822 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2055-5822 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | ESC Heart Failure |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ehf2.14288 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ESC Heart Failure |
| best_oa_location.landing_page_url | https://doi.org/10.1002/ehf2.14288 |
| primary_location.id | doi:10.1002/ehf2.14288 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764810254 |
| primary_location.source.issn | 2055-5822 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2055-5822 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | ESC Heart Failure |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ehf2.14288 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ESC Heart Failure |
| primary_location.landing_page_url | https://doi.org/10.1002/ehf2.14288 |
| publication_date | 2023-02-14 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4225396975, https://openalex.org/W2187887962, https://openalex.org/W2119061468, https://openalex.org/W2050221815, https://openalex.org/W2945334580, https://openalex.org/W2937704642, https://openalex.org/W2966052071, https://openalex.org/W2938809977, https://openalex.org/W2110243528, https://openalex.org/W3205907552, https://openalex.org/W2329624119, https://openalex.org/W3132494856, https://openalex.org/W4224015214, https://openalex.org/W2323862874, https://openalex.org/W2064186732, https://openalex.org/W3121267967, https://openalex.org/W1987971958, https://openalex.org/W3137509363, https://openalex.org/W1976196376, https://openalex.org/W3140277041, https://openalex.org/W171307226, https://openalex.org/W1963907451, https://openalex.org/W2982039390, https://openalex.org/W3135787315, https://openalex.org/W2018604495, https://openalex.org/W2899764361, https://openalex.org/W4320857308, https://openalex.org/W4229016368 |
| referenced_works_count | 28 |
| abstract_inverted_index.( | 200 |
| abstract_inverted_index.1 | 205 |
| abstract_inverted_index.5 | 239 |
| abstract_inverted_index.A | 49 |
| abstract_inverted_index.P | 201 |
| abstract_inverted_index.a | 43, 55 |
| abstract_inverted_index.10 | 125, 198, 265 |
| abstract_inverted_index.11 | 172 |
| abstract_inverted_index.56 | 93 |
| abstract_inverted_index.HF | 35, 84 |
| abstract_inverted_index.We | 25, 97 |
| abstract_inverted_index.be | 12 |
| abstract_inverted_index.by | 36, 115, 212, 262, 303 |
| abstract_inverted_index.in | 22, 42, 64, 73, 176, 326 |
| abstract_inverted_index.is | 210, 271 |
| abstract_inverted_index.of | 18, 31, 51, 58, 101, 207, 217, 243, 267, 274, 284, 312 |
| abstract_inverted_index.on | 104 |
| abstract_inverted_index.to | 4, 15, 27, 80, 322 |
| abstract_inverted_index.37% | 216 |
| abstract_inverted_index.All | 171 |
| abstract_inverted_index.HF. | 24, 116, 263, 304, 329 |
| abstract_inverted_index.all | 275 |
| abstract_inverted_index.and | 20, 47, 71, 111, 136, 142, 151, 161, 164, 167, 181, 188, 228, 256, 297 |
| abstract_inverted_index.due | 14 |
| abstract_inverted_index.for | 245, 249, 253, 258, 286, 290, 294, 299 |
| abstract_inverted_index.may | 11 |
| abstract_inverted_index.mm, | 234 |
| abstract_inverted_index.the | 16, 29, 65, 74, 99, 102, 177, 197, 218, 237, 268, 280, 309, 313 |
| abstract_inverted_index.two | 182 |
| abstract_inverted_index.< | 202 |
| abstract_inverted_index.(HF) | 9 |
| abstract_inverted_index.(red | 156 |
| abstract_inverted_index.4649 | 52 |
| abstract_inverted_index.Aims | 1 |
| abstract_inverted_index.LVEF | 214 |
| abstract_inverted_index.best | 238 |
| abstract_inverted_index.body | 168 |
| abstract_inverted_index.four | 128, 178, 276 |
| abstract_inverted_index.free | 112, 259, 300 |
| abstract_inverted_index.from | 113, 260, 301 |
| abstract_inverted_index.left | 59, 134, 230 |
| abstract_inverted_index.mass | 169 |
| abstract_inverted_index.rate | 150, 242, 283 |
| abstract_inverted_index.this | 81 |
| abstract_inverted_index.urea | 153 |
| abstract_inverted_index.were | 78, 86 |
| abstract_inverted_index.with | 34, 39, 54, 92, 127, 220, 328 |
| abstract_inverted_index.year | 240 |
| abstract_inverted_index.(6.0% | 266 |
| abstract_inverted_index.0.9%) | 227 |
| abstract_inverted_index.23.9% | 293 |
| abstract_inverted_index.28.1% | 298 |
| abstract_inverted_index.39.1% | 285 |
| abstract_inverted_index.68.9% | 289 |
| abstract_inverted_index.91.7% | 257 |
| abstract_inverted_index.92.9% | 252 |
| abstract_inverted_index.95.9% | 248 |
| abstract_inverted_index.98.1% | 244 |
| abstract_inverted_index.Heart | 68 |
| abstract_inverted_index.These | 306 |
| abstract_inverted_index.aimed | 26 |
| abstract_inverted_index.among | 196 |
| abstract_inverted_index.blood | 140, 152, 157 |
| abstract_inverted_index.brain | 143, 222 |
| abstract_inverted_index.broad | 56 |
| abstract_inverted_index.cell, | 158 |
| abstract_inverted_index.class | 118 |
| abstract_inverted_index.heart | 7, 186, 190 |
| abstract_inverted_index.renal | 146 |
| abstract_inverted_index.study | 77 |
| abstract_inverted_index.total | 50 |
| abstract_inverted_index.using | 88, 120 |
| abstract_inverted_index.which | 209, 270 |
| abstract_inverted_index.worst | 281 |
| abstract_inverted_index.(26.7% | 206 |
| abstract_inverted_index.(LVEF) | 63 |
| abstract_inverted_index.(LVEF, | 133 |
| abstract_inverted_index.0.01). | 203 |
| abstract_inverted_index.Latent | 117 |
| abstract_inverted_index.Tohoku | 75 |
| abstract_inverted_index.atrial | 135, 231 |
| abstract_inverted_index.death, | 106, 108, 110, 247, 251, 255, 288, 292, 296 |
| abstract_inverted_index.forest | 90, 122 |
| abstract_inverted_index.lowest | 221, 229 |
| abstract_inverted_index.pg/mL, | 226 |
| abstract_inverted_index.random | 89, 121 |
| abstract_inverted_index.showed | 192, 236, 279 |
| abstract_inverted_index.study. | 82 |
| abstract_inverted_index.total) | 219 |
| abstract_inverted_index.useful | 318 |
| abstract_inverted_index.(>42 | 233 |
| abstract_inverted_index.37.4%), | 235 |
| abstract_inverted_index.Chronic | 83 |
| abstract_inverted_index.Cluster | 204, 264 |
| abstract_inverted_index.Current | 2 |
| abstract_inverted_index.Failure | 69 |
| abstract_inverted_index.Methods | 46 |
| abstract_inverted_index.anaemia | 155 |
| abstract_inverted_index.cardiac | 131 |
| abstract_inverted_index.chronic | 6, 23, 32 |
| abstract_inverted_index.complex | 324 |
| abstract_inverted_index.count), | 163 |
| abstract_inverted_index.disease | 183, 187 |
| abstract_inverted_index.failure | 8 |
| abstract_inverted_index.index). | 170 |
| abstract_inverted_index.leaning | 315 |
| abstract_inverted_index.limited | 13 |
| abstract_inverted_index.machine | 40, 314 |
| abstract_inverted_index.peptide | 224 |
| abstract_inverted_index.primary | 129, 179, 277 |
| abstract_inverted_index.results | 48, 307 |
| abstract_inverted_index.suggest | 308 |
| abstract_inverted_index.total), | 269 |
| abstract_inverted_index.(Chronic | 67 |
| abstract_inverted_index.(albumin | 166 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Analysis | 70 |
| abstract_inverted_index.Registry | 72 |
| abstract_inverted_index.analysis | 119 |
| abstract_inverted_index.assessed | 98 |
| abstract_inverted_index.classify | 5 |
| abstract_inverted_index.clinical | 95, 174, 319 |
| abstract_inverted_index.clusters | 30, 103, 126, 199 |
| abstract_inverted_index.diameter | 232 |
| abstract_inverted_index.disease) | 191 |
| abstract_inverted_index.ejection | 61 |
| abstract_inverted_index.enrolled | 79 |
| abstract_inverted_index.fraction | 62 |
| abstract_inverted_index.function | 132, 147 |
| abstract_inverted_index.learning | 41 |
| abstract_inverted_index.patients | 33, 53, 85, 327 |
| abstract_inverted_index.platelet | 162 |
| abstract_inverted_index.spectrum | 57 |
| abstract_inverted_index.stratify | 323 |
| abstract_inverted_index.survival | 241, 282 |
| abstract_inverted_index.valvular | 189 |
| abstract_inverted_index.(<59%, | 215 |
| abstract_inverted_index.CHART‐2 | 66 |
| abstract_inverted_index.approach, | 316 |
| abstract_inverted_index.diastolic | 139 |
| abstract_inverted_index.disorders | 273 |
| abstract_inverted_index.diversity | 17 |
| abstract_inverted_index.elucidate | 28 |
| abstract_inverted_index.influence | 100 |
| abstract_inverted_index.nutrition | 165 |
| abstract_inverted_index.peptide), | 145 |
| abstract_inverted_index.potential | 310 |
| abstract_inverted_index.preserved | 213 |
| abstract_inverted_index.pressure, | 141 |
| abstract_inverted_index.providing | 317 |
| abstract_inverted_index.registry. | 45 |
| abstract_inverted_index.(>111.3 | 225 |
| abstract_inverted_index.(ischaemic | 185 |
| abstract_inverted_index.approaches | 3, 38 |
| abstract_inverted_index.classified | 87 |
| abstract_inverted_index.clustering | 91, 123 |
| abstract_inverted_index.components | 180 |
| abstract_inverted_index.diameters, | 138 |
| abstract_inverted_index.filtration | 149 |
| abstract_inverted_index.identified | 124 |
| abstract_inverted_index.multiscale | 94 |
| abstract_inverted_index.nitrogen), | 154 |
| abstract_inverted_index.parameters | 175 |
| abstract_inverted_index.patients), | 208 |
| abstract_inverted_index.prognostic | 320 |
| abstract_inverted_index.(glomerular | 148 |
| abstract_inverted_index.Conclusions | 305 |
| abstract_inverted_index.aetiologies | 184 |
| abstract_inverted_index.all‐cause | 109, 254, 295 |
| abstract_inverted_index.components, | 278 |
| abstract_inverted_index.components: | 130 |
| abstract_inverted_index.co‐morbid | 272 |
| abstract_inverted_index.differences | 195 |
| abstract_inverted_index.information | 321 |
| abstract_inverted_index.natriuretic | 144, 223 |
| abstract_inverted_index.parameters. | 96 |
| abstract_inverted_index.significant | 173, 194 |
| abstract_inverted_index.ventricular | 60, 137 |
| abstract_inverted_index.haematocrit, | 159 |
| abstract_inverted_index.haemoglobin, | 160 |
| abstract_inverted_index.District‐2) | 76 |
| abstract_inverted_index.applicability | 311 |
| abstract_inverted_index.characterized | 211 |
| abstract_inverted_index.data‐driven | 37 |
| abstract_inverted_index.heterogeneity | 325 |
| abstract_inverted_index.statistically | 193 |
| abstract_inverted_index.cardiovascular | 105, 246, 287 |
| abstract_inverted_index.subpopulations | 10 |
| abstract_inverted_index.hospitalization | 114, 261, 302 |
| abstract_inverted_index.pathophysiology | 19 |
| abstract_inverted_index.co‐morbidities | 21 |
| abstract_inverted_index.hospital‐based | 44 |
| abstract_inverted_index.non‐cardiovascular | 107, 250, 291 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5053830232 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 12 |
| corresponding_institution_ids | https://openalex.org/I201537933, https://openalex.org/I4210093896 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6600000262260437 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.9483085 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |