Machine Learning Approach to Understand Worsening Renal Function in Acute Heart Failure Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/biom12111616
Acute heart failure (AHF) is a common and severe condition with a poor prognosis. Its course is often complicated by worsening renal function (WRF), exacerbating the outcome. The population of AHF patients experiencing WRF is heterogenous, and some novel possibilities for its analysis have recently emerged. Clustering is a machine learning (ML) technique that divides the population into distinct subgroups based on the similarity of cases (patients). Given that, we decided to use clustering to find subgroups inside the AHF population that differ in terms of WRF occurrence. We evaluated data from the three hundred and twelve AHF patients hospitalized in our institution who had creatinine assessed four times during hospitalization. Eighty-six variables evaluated at admission were included in the analysis. The k-medoids algorithm was used for clustering, and the quality of the procedure was judged by the Davies–Bouldin index. Three clinically and prognostically different clusters were distinguished. The groups had significantly (p = 0.004) different incidences of WRF. Inside the AHF population, we successfully discovered that three groups varied in renal prognosis. Our results provide novel insight into the AHF and WRF interplay and can be valuable for future trial construction and more tailored treatment.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/biom12111616
- https://www.mdpi.com/2218-273X/12/11/1616/pdf?version=1667358674
- OA Status
- gold
- Cited By
- 6
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4308119340
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4308119340Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/biom12111616Digital Object Identifier
- Title
-
Machine Learning Approach to Understand Worsening Renal Function in Acute Heart FailureWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-02Full publication date if available
- Authors
-
Szymon Urban, Mikołaj Błaziak, Maksym Jura, Gracjan Iwanek, Barbara Ponikowska, Jolanta Horudko, Agnieszka Siennicka, Petr Berka, Jan Biegus, Piotr Ponikowski, Robert ZymlińskiList of authors in order
- Landing page
-
https://doi.org/10.3390/biom12111616Publisher landing page
- PDF URL
-
https://www.mdpi.com/2218-273X/12/11/1616/pdf?version=1667358674Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2218-273X/12/11/1616/pdf?version=1667358674Direct OA link when available
- Concepts
-
Heart failure, Population, Cluster analysis, Renal function, Medicine, Creatinine, Weather Research and Forecasting Model, Similarity (geometry), Internal medicine, Intensive care medicine, Computer science, Artificial intelligence, Geography, Meteorology, Environmental health, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4308119340 |
|---|---|
| doi | https://doi.org/10.3390/biom12111616 |
| ids.doi | https://doi.org/10.3390/biom12111616 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36358966 |
| ids.openalex | https://openalex.org/W4308119340 |
| fwci | 1.32279289 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000208 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Acute Disease |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D003404 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Creatinine |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006333 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Heart Failure |
| mesh[4].qualifier_ui | Q000502 |
| mesh[4].descriptor_ui | D007668 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | physiology |
| mesh[4].descriptor_name | Kidney |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000069550 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Machine Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000208 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Acute Disease |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D003404 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Creatinine |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006333 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Heart Failure |
| mesh[10].qualifier_ui | Q000502 |
| mesh[10].descriptor_ui | D007668 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | physiology |
| mesh[10].descriptor_name | Kidney |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000069550 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Machine Learning |
| type | article |
| title | Machine Learning Approach to Understand Worsening Renal Function in Acute Heart Failure |
| biblio.issue | 11 |
| biblio.volume | 12 |
| biblio.last_page | 1616 |
| biblio.first_page | 1616 |
| topics[0].id | https://openalex.org/T10198 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | Heart Failure Treatment and Management |
| topics[1].id | https://openalex.org/T10291 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9524000287055969 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2727 |
| topics[1].subfield.display_name | Nephrology |
| topics[1].display_name | Dialysis and Renal Disease Management |
| topics[2].id | https://openalex.org/T11396 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9273999929428101 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3605 |
| topics[2].subfield.display_name | Health Information Management |
| topics[2].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list.value | 2100 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2273 |
| apc_paid.value | 2100 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2273 |
| concepts[0].id | https://openalex.org/C2778198053 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6157699823379517 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q181754 |
| concepts[0].display_name | Heart failure |
| concepts[1].id | https://openalex.org/C2908647359 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5972741842269897 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[1].display_name | Population |
| concepts[2].id | https://openalex.org/C73555534 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5732797384262085 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[2].display_name | Cluster analysis |
| concepts[3].id | https://openalex.org/C159641895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5721179842948914 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q108377937 |
| concepts[3].display_name | Renal function |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5622830390930176 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C2780306776 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5256468057632446 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q426660 |
| concepts[5].display_name | Creatinine |
| concepts[6].id | https://openalex.org/C133204551 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5058488845825195 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q838305 |
| concepts[6].display_name | Weather Research and Forecasting Model |
| concepts[7].id | https://openalex.org/C103278499 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4637153148651123 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[7].display_name | Similarity (geometry) |
| concepts[8].id | https://openalex.org/C126322002 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4154050350189209 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[8].display_name | Internal medicine |
| concepts[9].id | https://openalex.org/C177713679 |
| concepts[9].level | 1 |
| concepts[9].score | 0.38475501537323 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q679690 |
| concepts[9].display_name | Intensive care medicine |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2353370487689972 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.19946128129959106 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.11954858899116516 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C153294291 |
| concepts[13].level | 1 |
| concepts[13].score | 0.07999369502067566 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[13].display_name | Meteorology |
| concepts[14].id | https://openalex.org/C99454951 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[14].display_name | Environmental health |
| concepts[15].id | https://openalex.org/C115961682 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[15].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/heart-failure |
| keywords[0].score | 0.6157699823379517 |
| keywords[0].display_name | Heart failure |
| keywords[1].id | https://openalex.org/keywords/population |
| keywords[1].score | 0.5972741842269897 |
| keywords[1].display_name | Population |
| keywords[2].id | https://openalex.org/keywords/cluster-analysis |
| keywords[2].score | 0.5732797384262085 |
| keywords[2].display_name | Cluster analysis |
| keywords[3].id | https://openalex.org/keywords/renal-function |
| keywords[3].score | 0.5721179842948914 |
| keywords[3].display_name | Renal function |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.5622830390930176 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/creatinine |
| keywords[5].score | 0.5256468057632446 |
| keywords[5].display_name | Creatinine |
| keywords[6].id | https://openalex.org/keywords/weather-research-and-forecasting-model |
| keywords[6].score | 0.5058488845825195 |
| keywords[6].display_name | Weather Research and Forecasting Model |
| keywords[7].id | https://openalex.org/keywords/similarity |
| keywords[7].score | 0.4637153148651123 |
| keywords[7].display_name | Similarity (geometry) |
| keywords[8].id | https://openalex.org/keywords/internal-medicine |
| keywords[8].score | 0.4154050350189209 |
| keywords[8].display_name | Internal medicine |
| keywords[9].id | https://openalex.org/keywords/intensive-care-medicine |
| keywords[9].score | 0.38475501537323 |
| keywords[9].display_name | Intensive care medicine |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.2353370487689972 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.19946128129959106 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.11954858899116516 |
| keywords[12].display_name | Geography |
| keywords[13].id | https://openalex.org/keywords/meteorology |
| keywords[13].score | 0.07999369502067566 |
| keywords[13].display_name | Meteorology |
| language | en |
| locations[0].id | doi:10.3390/biom12111616 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210236520 |
| locations[0].source.issn | 2218-273X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2218-273X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Biomolecules |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2218-273X/12/11/1616/pdf?version=1667358674 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Biomolecules |
| locations[0].landing_page_url | https://doi.org/10.3390/biom12111616 |
| locations[1].id | pmid:36358966 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Biomolecules |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36358966 |
| locations[2].id | pmh:oai:doaj.org/article:818133e22da9471f9c2f27ae539312b3 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].source.host_organization_lineage | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Biomolecules, Vol 12, Iss 11, p 1616 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/818133e22da9471f9c2f27ae539312b3 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:9687716 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Biomolecules |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9687716 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5008979450 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5547-150X |
| authorships[0].author.display_name | Szymon Urban |
| authorships[0].countries | PL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I385303915 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland |
| authorships[0].institutions[0].id | https://openalex.org/I385303915 |
| authorships[0].institutions[0].ror | https://ror.org/01qpw1b93 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I385303915 |
| authorships[0].institutions[0].country_code | PL |
| authorships[0].institutions[0].display_name | Wroclaw Medical University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Szymon Urban |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland |
| authorships[1].author.id | https://openalex.org/A5044866059 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8207-1723 |
| authorships[1].author.display_name | Mikołaj Błaziak |
| authorships[1].countries | PL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I385303915 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland |
| authorships[1].institutions[0].id | https://openalex.org/I385303915 |
| authorships[1].institutions[0].ror | https://ror.org/01qpw1b93 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I385303915 |
| authorships[1].institutions[0].country_code | PL |
| authorships[1].institutions[0].display_name | Wroclaw Medical University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mikołaj Błaziak |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland |
| authorships[2].author.id | https://openalex.org/A5019047798 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4316-8623 |
| authorships[2].author.display_name | Maksym Jura |
| authorships[2].countries | PL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I385303915 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Physiology and Patophysiology, Wroclaw Medical University, 50-368 Wroclaw, Poland |
| authorships[2].institutions[0].id | https://openalex.org/I385303915 |
| authorships[2].institutions[0].ror | https://ror.org/01qpw1b93 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I385303915 |
| authorships[2].institutions[0].country_code | PL |
| authorships[2].institutions[0].display_name | Wroclaw Medical University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Maksym Jura |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Physiology and Patophysiology, Wroclaw Medical University, 50-368 Wroclaw, Poland |
| authorships[3].author.id | https://openalex.org/A5029842987 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8574-9963 |
| authorships[3].author.display_name | Gracjan Iwanek |
| authorships[3].countries | PL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I385303915 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland |
| authorships[3].institutions[0].id | https://openalex.org/I385303915 |
| authorships[3].institutions[0].ror | https://ror.org/01qpw1b93 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I385303915 |
| authorships[3].institutions[0].country_code | PL |
| authorships[3].institutions[0].display_name | Wroclaw Medical University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gracjan Iwanek |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland |
| authorships[4].author.id | https://openalex.org/A5022566580 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6979-2777 |
| authorships[4].author.display_name | Barbara Ponikowska |
| authorships[4].countries | PL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I385303915 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Heart Diseases, Student Scientific Organization, Wroclaw Medical University, 50-368 Wroclaw, Poland |
| authorships[4].institutions[0].id | https://openalex.org/I385303915 |
| authorships[4].institutions[0].ror | https://ror.org/01qpw1b93 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I385303915 |
| authorships[4].institutions[0].country_code | PL |
| authorships[4].institutions[0].display_name | Wroclaw Medical University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Barbara Ponikowska |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Heart Diseases, Student Scientific Organization, Wroclaw Medical University, 50-368 Wroclaw, Poland |
| authorships[5].author.id | https://openalex.org/A5087099492 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Jolanta Horudko |
| authorships[5].countries | PL |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I108403487 |
| authorships[5].affiliations[0].raw_affiliation_string | Faculty of Electrical Engineering, Warsaw University of Technology, 00-614 Warszawa, Poland |
| authorships[5].institutions[0].id | https://openalex.org/I108403487 |
| authorships[5].institutions[0].ror | https://ror.org/00y0xnp53 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I108403487 |
| authorships[5].institutions[0].country_code | PL |
| authorships[5].institutions[0].display_name | Warsaw University of Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jolanta Horudko |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Faculty of Electrical Engineering, Warsaw University of Technology, 00-614 Warszawa, Poland |
| authorships[6].author.id | https://openalex.org/A5091443614 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0988-5821 |
| authorships[6].author.display_name | Agnieszka Siennicka |
| authorships[6].countries | PL |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I385303915 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Physiology and Patophysiology, Wroclaw Medical University, 50-368 Wroclaw, Poland |
| authorships[6].institutions[0].id | https://openalex.org/I385303915 |
| authorships[6].institutions[0].ror | https://ror.org/01qpw1b93 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I385303915 |
| authorships[6].institutions[0].country_code | PL |
| authorships[6].institutions[0].display_name | Wroclaw Medical University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Agnieszka Siennicka |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Physiology and Patophysiology, Wroclaw Medical University, 50-368 Wroclaw, Poland |
| authorships[7].author.id | https://openalex.org/A5037266804 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-0464-2257 |
| authorships[7].author.display_name | Petr Berka |
| authorships[7].countries | CZ |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I35913352 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Information and Knowledge Engineering, Prague University of Economics and Business, W. Churchill Sq. 1938/4, 130 67 Prague, Czech Republic |
| authorships[7].institutions[0].id | https://openalex.org/I35913352 |
| authorships[7].institutions[0].ror | https://ror.org/029ecwj92 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I35913352 |
| authorships[7].institutions[0].country_code | CZ |
| authorships[7].institutions[0].display_name | Prague University of Economics and Business |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Petr Berka |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Information and Knowledge Engineering, Prague University of Economics and Business, W. Churchill Sq. 1938/4, 130 67 Prague, Czech Republic |
| authorships[8].author.id | https://openalex.org/A5075181434 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-9977-7722 |
| authorships[8].author.display_name | Jan Biegus |
| authorships[8].countries | PL |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I385303915 |
| authorships[8].affiliations[0].raw_affiliation_string | Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland |
| authorships[8].institutions[0].id | https://openalex.org/I385303915 |
| authorships[8].institutions[0].ror | https://ror.org/01qpw1b93 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I385303915 |
| authorships[8].institutions[0].country_code | PL |
| authorships[8].institutions[0].display_name | Wroclaw Medical University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Jan Biegus |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland |
| authorships[9].author.id | https://openalex.org/A5017272571 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-3391-7064 |
| authorships[9].author.display_name | Piotr Ponikowski |
| authorships[9].countries | PL |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I385303915 |
| authorships[9].affiliations[0].raw_affiliation_string | Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland |
| authorships[9].institutions[0].id | https://openalex.org/I385303915 |
| authorships[9].institutions[0].ror | https://ror.org/01qpw1b93 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I385303915 |
| authorships[9].institutions[0].country_code | PL |
| authorships[9].institutions[0].display_name | Wroclaw Medical University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Piotr Ponikowski |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland |
| authorships[10].author.id | https://openalex.org/A5087022473 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-1483-7381 |
| authorships[10].author.display_name | Robert Zymliński |
| authorships[10].countries | PL |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I385303915 |
| authorships[10].affiliations[0].raw_affiliation_string | Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland |
| authorships[10].institutions[0].id | https://openalex.org/I385303915 |
| authorships[10].institutions[0].ror | https://ror.org/01qpw1b93 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I385303915 |
| authorships[10].institutions[0].country_code | PL |
| authorships[10].institutions[0].display_name | Wroclaw Medical University |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Robert Zymliński |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2218-273X/12/11/1616/pdf?version=1667358674 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine Learning Approach to Understand Worsening Renal Function in Acute Heart Failure |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10198 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | Heart Failure Treatment and Management |
| related_works | https://openalex.org/W1948603161, https://openalex.org/W2909812024, https://openalex.org/W2411849704, https://openalex.org/W1564222293, https://openalex.org/W2387860588, https://openalex.org/W393698729, https://openalex.org/W2050789305, https://openalex.org/W2313598751, https://openalex.org/W4226212074, https://openalex.org/W2398053996 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/biom12111616 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210236520 |
| best_oa_location.source.issn | 2218-273X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2218-273X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Biomolecules |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2218-273X/12/11/1616/pdf?version=1667358674 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Biomolecules |
| best_oa_location.landing_page_url | https://doi.org/10.3390/biom12111616 |
| primary_location.id | doi:10.3390/biom12111616 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210236520 |
| primary_location.source.issn | 2218-273X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2218-273X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Biomolecules |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2218-273X/12/11/1616/pdf?version=1667358674 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Biomolecules |
| primary_location.landing_page_url | https://doi.org/10.3390/biom12111616 |
| publication_date | 2022-11-02 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W4210937888, https://openalex.org/W3193598686, https://openalex.org/W2912227678, https://openalex.org/W2023644538, https://openalex.org/W2611443612, https://openalex.org/W2068109937, https://openalex.org/W2004782018, https://openalex.org/W6841690685, https://openalex.org/W2916390316, https://openalex.org/W2406255832, https://openalex.org/W2569663557, https://openalex.org/W2397911846, https://openalex.org/W2148910374, https://openalex.org/W6657033771, https://openalex.org/W2051224630, https://openalex.org/W3006623441, https://openalex.org/W4206303401, https://openalex.org/W1998846386, https://openalex.org/W4294989675, https://openalex.org/W3026003193, https://openalex.org/W3087470875, https://openalex.org/W4200131524, https://openalex.org/W3037286407, https://openalex.org/W2955994753, https://openalex.org/W4283657027, https://openalex.org/W1976196376, https://openalex.org/W3201032145, https://openalex.org/W2338332677, https://openalex.org/W2171352435, https://openalex.org/W2440694817, https://openalex.org/W2612219720, https://openalex.org/W4206794275, https://openalex.org/W4292548929, https://openalex.org/W3193297191, https://openalex.org/W2921779932, https://openalex.org/W4293354639, https://openalex.org/W2087748688, https://openalex.org/W2135964034, https://openalex.org/W6713509656, https://openalex.org/W2002312823, https://openalex.org/W2784257687, https://openalex.org/W2581096780, https://openalex.org/W3167169076, https://openalex.org/W2221748822, https://openalex.org/W2461008830, https://openalex.org/W189464228, https://openalex.org/W2794917071, https://openalex.org/W2559783410, https://openalex.org/W2324238275, https://openalex.org/W4291396964, https://openalex.org/W2026274122, https://openalex.org/W2475261460, https://openalex.org/W2605975631, https://openalex.org/W2427094903 |
| referenced_works_count | 54 |
| abstract_inverted_index.= | 153 |
| abstract_inverted_index.a | 5, 11, 48 |
| abstract_inverted_index.(p | 152 |
| abstract_inverted_index.We | 88 |
| abstract_inverted_index.at | 114 |
| abstract_inverted_index.be | 186 |
| abstract_inverted_index.by | 19, 136 |
| abstract_inverted_index.in | 83, 100, 118, 170 |
| abstract_inverted_index.is | 4, 16, 34, 47 |
| abstract_inverted_index.of | 29, 64, 85, 131, 157 |
| abstract_inverted_index.on | 61 |
| abstract_inverted_index.to | 71, 74 |
| abstract_inverted_index.we | 69, 163 |
| abstract_inverted_index.AHF | 30, 79, 97, 161, 180 |
| abstract_inverted_index.Its | 14 |
| abstract_inverted_index.Our | 173 |
| abstract_inverted_index.The | 27, 121, 148 |
| abstract_inverted_index.WRF | 33, 86, 182 |
| abstract_inverted_index.and | 7, 36, 95, 128, 142, 181, 184, 192 |
| abstract_inverted_index.can | 185 |
| abstract_inverted_index.for | 40, 126, 188 |
| abstract_inverted_index.had | 104, 150 |
| abstract_inverted_index.its | 41 |
| abstract_inverted_index.our | 101 |
| abstract_inverted_index.the | 25, 55, 62, 78, 92, 119, 129, 132, 137, 160, 179 |
| abstract_inverted_index.use | 72 |
| abstract_inverted_index.was | 124, 134 |
| abstract_inverted_index.who | 103 |
| abstract_inverted_index.(ML) | 51 |
| abstract_inverted_index.WRF. | 158 |
| abstract_inverted_index.data | 90 |
| abstract_inverted_index.find | 75 |
| abstract_inverted_index.four | 107 |
| abstract_inverted_index.from | 91 |
| abstract_inverted_index.have | 43 |
| abstract_inverted_index.into | 57, 178 |
| abstract_inverted_index.more | 193 |
| abstract_inverted_index.poor | 12 |
| abstract_inverted_index.some | 37 |
| abstract_inverted_index.that | 53, 81, 166 |
| abstract_inverted_index.used | 125 |
| abstract_inverted_index.were | 116, 146 |
| abstract_inverted_index.with | 10 |
| abstract_inverted_index.(AHF) | 3 |
| abstract_inverted_index.Acute | 0 |
| abstract_inverted_index.Given | 67 |
| abstract_inverted_index.Three | 140 |
| abstract_inverted_index.based | 60 |
| abstract_inverted_index.cases | 65 |
| abstract_inverted_index.heart | 1 |
| abstract_inverted_index.novel | 38, 176 |
| abstract_inverted_index.often | 17 |
| abstract_inverted_index.renal | 21, 171 |
| abstract_inverted_index.terms | 84 |
| abstract_inverted_index.that, | 68 |
| abstract_inverted_index.three | 93, 167 |
| abstract_inverted_index.times | 108 |
| abstract_inverted_index.trial | 190 |
| abstract_inverted_index.(WRF), | 23 |
| abstract_inverted_index.0.004) | 154 |
| abstract_inverted_index.Inside | 159 |
| abstract_inverted_index.common | 6 |
| abstract_inverted_index.course | 15 |
| abstract_inverted_index.differ | 82 |
| abstract_inverted_index.during | 109 |
| abstract_inverted_index.future | 189 |
| abstract_inverted_index.groups | 149, 168 |
| abstract_inverted_index.index. | 139 |
| abstract_inverted_index.inside | 77 |
| abstract_inverted_index.judged | 135 |
| abstract_inverted_index.severe | 8 |
| abstract_inverted_index.twelve | 96 |
| abstract_inverted_index.varied | 169 |
| abstract_inverted_index.decided | 70 |
| abstract_inverted_index.divides | 54 |
| abstract_inverted_index.failure | 2 |
| abstract_inverted_index.hundred | 94 |
| abstract_inverted_index.insight | 177 |
| abstract_inverted_index.machine | 49 |
| abstract_inverted_index.provide | 175 |
| abstract_inverted_index.quality | 130 |
| abstract_inverted_index.results | 174 |
| abstract_inverted_index.analysis | 42 |
| abstract_inverted_index.assessed | 106 |
| abstract_inverted_index.clusters | 145 |
| abstract_inverted_index.distinct | 58 |
| abstract_inverted_index.emerged. | 45 |
| abstract_inverted_index.function | 22 |
| abstract_inverted_index.included | 117 |
| abstract_inverted_index.learning | 50 |
| abstract_inverted_index.outcome. | 26 |
| abstract_inverted_index.patients | 31, 98 |
| abstract_inverted_index.recently | 44 |
| abstract_inverted_index.tailored | 194 |
| abstract_inverted_index.valuable | 187 |
| abstract_inverted_index.admission | 115 |
| abstract_inverted_index.algorithm | 123 |
| abstract_inverted_index.analysis. | 120 |
| abstract_inverted_index.condition | 9 |
| abstract_inverted_index.different | 144, 155 |
| abstract_inverted_index.evaluated | 89, 113 |
| abstract_inverted_index.interplay | 183 |
| abstract_inverted_index.k-medoids | 122 |
| abstract_inverted_index.procedure | 133 |
| abstract_inverted_index.subgroups | 59, 76 |
| abstract_inverted_index.technique | 52 |
| abstract_inverted_index.variables | 112 |
| abstract_inverted_index.worsening | 20 |
| abstract_inverted_index.Clustering | 46 |
| abstract_inverted_index.Eighty-six | 111 |
| abstract_inverted_index.clinically | 141 |
| abstract_inverted_index.clustering | 73 |
| abstract_inverted_index.creatinine | 105 |
| abstract_inverted_index.discovered | 165 |
| abstract_inverted_index.incidences | 156 |
| abstract_inverted_index.population | 28, 56, 80 |
| abstract_inverted_index.prognosis. | 13, 172 |
| abstract_inverted_index.similarity | 63 |
| abstract_inverted_index.treatment. | 195 |
| abstract_inverted_index.(patients). | 66 |
| abstract_inverted_index.clustering, | 127 |
| abstract_inverted_index.complicated | 18 |
| abstract_inverted_index.institution | 102 |
| abstract_inverted_index.occurrence. | 87 |
| abstract_inverted_index.population, | 162 |
| abstract_inverted_index.construction | 191 |
| abstract_inverted_index.exacerbating | 24 |
| abstract_inverted_index.experiencing | 32 |
| abstract_inverted_index.hospitalized | 99 |
| abstract_inverted_index.successfully | 164 |
| abstract_inverted_index.heterogenous, | 35 |
| abstract_inverted_index.possibilities | 39 |
| abstract_inverted_index.significantly | 151 |
| abstract_inverted_index.distinguished. | 147 |
| abstract_inverted_index.prognostically | 143 |
| abstract_inverted_index.Davies–Bouldin | 138 |
| abstract_inverted_index.hospitalization. | 110 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5008979450 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 11 |
| corresponding_institution_ids | https://openalex.org/I385303915 |
| citation_normalized_percentile.value | 0.78332191 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |