Machine Learning Approaches-Driven for Mortality Prediction for Patients Undergoing Craniotomy in ICU Article Swipe
Ronguo Yu
,
Shaobo Wang
,
Jingqing Xu
,
Qiqi Wang
,
Xinjun He
,
Jun Li
,
Xiuling Shang
,
Han Chen
,
Youjun Liu
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1080/02699052.2021.2008491
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1080/02699052.2021.2008491
This study established the mortality predictive model of patients who had undergone craniotomy in ICU. Identification of the factors that had great influence on mortality has the potential to provide auxiliary decision support for clinical medical staff on their practices.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/02699052.2021.2008491
- https://www.tandfonline.com/doi/pdf/10.1080/02699052.2021.2008491?needAccess=true
- OA Status
- bronze
- Cited By
- 7
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4210817104
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4210817104Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/02699052.2021.2008491Digital Object Identifier
- Title
-
Machine Learning Approaches-Driven for Mortality Prediction for Patients Undergoing Craniotomy in ICUWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-06Full publication date if available
- Authors
-
Ronguo Yu, Shaobo Wang, Jingqing Xu, Qiqi Wang, Xinjun He, Jun Li, Xiuling Shang, Han Chen, Youjun LiuList of authors in order
- Landing page
-
https://doi.org/10.1080/02699052.2021.2008491Publisher landing page
- PDF URL
-
https://www.tandfonline.com/doi/pdf/10.1080/02699052.2021.2008491?needAccess=trueDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://www.tandfonline.com/doi/pdf/10.1080/02699052.2021.2008491?needAccess=trueDirect OA link when available
- Concepts
-
Brier score, Intensive care unit, Medicine, Receiver operating characteristic, Gradient boosting, Machine learning, Predictive modelling, Artificial intelligence, Craniotomy, Emergency medicine, Intensive care medicine, Computer science, Surgery, Random forestTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4210817104 |
|---|---|
| doi | https://doi.org/10.1080/02699052.2021.2008491 |
| ids.doi | https://doi.org/10.1080/02699052.2021.2008491 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35080996 |
| ids.openalex | https://openalex.org/W4210817104 |
| fwci | 0.70551788 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D003399 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Craniotomy |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D017052 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Hospital Mortality |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D006801 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Humans |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D007362 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Intensive Care Units |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000069550 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Machine Learning |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D012189 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Retrospective Studies |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D003399 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Craniotomy |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D017052 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Hospital Mortality |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006801 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Humans |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D007362 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Intensive Care Units |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000069550 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Machine Learning |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D012189 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Retrospective Studies |
| type | article |
| title | Machine Learning Approaches-Driven for Mortality Prediction for Patients Undergoing Craniotomy in ICU |
| awards[0].id | https://openalex.org/G304446264 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 11832003 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 14 |
| biblio.volume | 35 |
| biblio.last_page | 1664 |
| biblio.first_page | 1658 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.996399998664856 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T11930 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9951000213623047 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Cardiac, Anesthesia and Surgical Outcomes |
| topics[2].id | https://openalex.org/T10706 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.992900013923645 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2728 |
| topics[2].subfield.display_name | Neurology |
| topics[2].display_name | Traumatic Brain Injury and Neurovascular Disturbances |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C35405484 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7112380266189575 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4967066 |
| concepts[0].display_name | Brier score |
| concepts[1].id | https://openalex.org/C2776376669 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6488351821899414 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5094647 |
| concepts[1].display_name | Intensive care unit |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6270921230316162 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C58471807 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6183027029037476 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[3].display_name | Receiver operating characteristic |
| concepts[4].id | https://openalex.org/C70153297 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5237217545509338 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5591907 |
| concepts[4].display_name | Gradient boosting |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5231479406356812 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C45804977 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4909115433692932 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[6].display_name | Predictive modelling |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4475937485694885 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C2778871575 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43873634934425354 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q514921 |
| concepts[8].display_name | Craniotomy |
| concepts[9].id | https://openalex.org/C194828623 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4288119077682495 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2861470 |
| concepts[9].display_name | Emergency medicine |
| concepts[10].id | https://openalex.org/C177713679 |
| concepts[10].level | 1 |
| concepts[10].score | 0.37242230772972107 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q679690 |
| concepts[10].display_name | Intensive care medicine |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3005679249763489 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C141071460 |
| concepts[12].level | 1 |
| concepts[12].score | 0.22263231873512268 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q40821 |
| concepts[12].display_name | Surgery |
| concepts[13].id | https://openalex.org/C169258074 |
| concepts[13].level | 2 |
| concepts[13].score | 0.1268780529499054 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[13].display_name | Random forest |
| keywords[0].id | https://openalex.org/keywords/brier-score |
| keywords[0].score | 0.7112380266189575 |
| keywords[0].display_name | Brier score |
| keywords[1].id | https://openalex.org/keywords/intensive-care-unit |
| keywords[1].score | 0.6488351821899414 |
| keywords[1].display_name | Intensive care unit |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.6270921230316162 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[3].score | 0.6183027029037476 |
| keywords[3].display_name | Receiver operating characteristic |
| keywords[4].id | https://openalex.org/keywords/gradient-boosting |
| keywords[4].score | 0.5237217545509338 |
| keywords[4].display_name | Gradient boosting |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.5231479406356812 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/predictive-modelling |
| keywords[6].score | 0.4909115433692932 |
| keywords[6].display_name | Predictive modelling |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4475937485694885 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/craniotomy |
| keywords[8].score | 0.43873634934425354 |
| keywords[8].display_name | Craniotomy |
| keywords[9].id | https://openalex.org/keywords/emergency-medicine |
| keywords[9].score | 0.4288119077682495 |
| keywords[9].display_name | Emergency medicine |
| keywords[10].id | https://openalex.org/keywords/intensive-care-medicine |
| keywords[10].score | 0.37242230772972107 |
| keywords[10].display_name | Intensive care medicine |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.3005679249763489 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/surgery |
| keywords[12].score | 0.22263231873512268 |
| keywords[12].display_name | Surgery |
| keywords[13].id | https://openalex.org/keywords/random-forest |
| keywords[13].score | 0.1268780529499054 |
| keywords[13].display_name | Random forest |
| language | en |
| locations[0].id | doi:10.1080/02699052.2021.2008491 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S166957603 |
| locations[0].source.issn | 0269-9052, 1362-301X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0269-9052 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Brain Injury |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | |
| locations[0].pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/02699052.2021.2008491?needAccess=true |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Brain Injury |
| locations[0].landing_page_url | https://doi.org/10.1080/02699052.2021.2008491 |
| locations[1].id | pmid:35080996 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Brain injury |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35080996 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5007872454 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ronguo Yu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210143087 |
| authorships[0].affiliations[0].raw_affiliation_string | Surgical Intensive Care Unit, Fujian Provincial Hospital, Fujian, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210143087 |
| authorships[0].institutions[0].ror | https://ror.org/045wzwx52 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210143087 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Fujian Provincial Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ronguo Yu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Surgical Intensive Care Unit, Fujian Provincial Hospital, Fujian, China |
| authorships[1].author.id | https://openalex.org/A5100693333 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5195-8716 |
| authorships[1].author.display_name | Shaobo Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China |
| authorships[1].affiliations[1].raw_affiliation_string | Yidu Cloud (Beijing) Technology Co. Ltd, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I37796252 |
| authorships[1].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shaobo Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China, Yidu Cloud (Beijing) Technology Co. Ltd, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5106716905 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jingqing Xu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210143087 |
| authorships[2].affiliations[0].raw_affiliation_string | Surgical Intensive Care Unit, Fujian Provincial Hospital, Fujian, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210143087 |
| authorships[2].institutions[0].ror | https://ror.org/045wzwx52 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210143087 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Fujian Provincial Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jingqing Xu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Surgical Intensive Care Unit, Fujian Provincial Hospital, Fujian, China |
| authorships[3].author.id | https://openalex.org/A5101519067 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8633-1342 |
| authorships[3].author.display_name | Qiqi Wang |
| authorships[3].affiliations[0].raw_affiliation_string | Yidu Cloud (Beijing) Technology Co. Ltd, Beijing, China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qiqi Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Yidu Cloud (Beijing) Technology Co. Ltd, Beijing, China |
| authorships[4].author.id | https://openalex.org/A5111638557 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Xinjun He |
| authorships[4].affiliations[0].raw_affiliation_string | Yidu Cloud (Beijing) Technology Co. Ltd, Beijing, China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xinjun He |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Yidu Cloud (Beijing) Technology Co. Ltd, Beijing, China |
| authorships[5].author.id | https://openalex.org/A5101694874 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8192-3744 |
| authorships[5].author.display_name | Jun Li |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210143087 |
| authorships[5].affiliations[0].raw_affiliation_string | Surgical Intensive Care Unit, Fujian Provincial Hospital, Fujian, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210143087 |
| authorships[5].institutions[0].ror | https://ror.org/045wzwx52 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210143087 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Fujian Provincial Hospital |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jun Li |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Surgical Intensive Care Unit, Fujian Provincial Hospital, Fujian, China |
| authorships[6].author.id | https://openalex.org/A5102747690 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5390-6733 |
| authorships[6].author.display_name | Xiuling Shang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210143087 |
| authorships[6].affiliations[0].raw_affiliation_string | Surgical Intensive Care Unit, Fujian Provincial Hospital, Fujian, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210143087 |
| authorships[6].institutions[0].ror | https://ror.org/045wzwx52 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210143087 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Fujian Provincial Hospital |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Xiuling Shang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Surgical Intensive Care Unit, Fujian Provincial Hospital, Fujian, China |
| authorships[7].author.id | https://openalex.org/A5100732644 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-3000-3152 |
| authorships[7].author.display_name | Han Chen |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210143087 |
| authorships[7].affiliations[0].raw_affiliation_string | Surgical Intensive Care Unit, Fujian Provincial Hospital, Fujian, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210143087 |
| authorships[7].institutions[0].ror | https://ror.org/045wzwx52 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210143087 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Fujian Provincial Hospital |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Han Chen |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Surgical Intensive Care Unit, Fujian Provincial Hospital, Fujian, China |
| authorships[8].author.id | https://openalex.org/A5100744338 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Youjun Liu |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[8].affiliations[0].raw_affiliation_string | College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China |
| authorships[8].institutions[0].id | https://openalex.org/I37796252 |
| authorships[8].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Beijing University of Technology |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Youjun Liu |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.tandfonline.com/doi/pdf/10.1080/02699052.2021.2008491?needAccess=true |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine Learning Approaches-Driven for Mortality Prediction for Patients Undergoing Craniotomy in ICU |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.996399998664856 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W1774890144, https://openalex.org/W4293426625, https://openalex.org/W2728311169, https://openalex.org/W3121128755, https://openalex.org/W1875926297, https://openalex.org/W2320542465, https://openalex.org/W3023244261, https://openalex.org/W4362673256, https://openalex.org/W4388451786, https://openalex.org/W4388451310 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1080/02699052.2021.2008491 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S166957603 |
| best_oa_location.source.issn | 0269-9052, 1362-301X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0269-9052 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Brain Injury |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/02699052.2021.2008491?needAccess=true |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Brain Injury |
| best_oa_location.landing_page_url | https://doi.org/10.1080/02699052.2021.2008491 |
| primary_location.id | doi:10.1080/02699052.2021.2008491 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S166957603 |
| primary_location.source.issn | 0269-9052, 1362-301X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0269-9052 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Brain Injury |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | |
| primary_location.pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/02699052.2021.2008491?needAccess=true |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Brain Injury |
| primary_location.landing_page_url | https://doi.org/10.1080/02699052.2021.2008491 |
| publication_date | 2021-12-06 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2015046731, https://openalex.org/W2130998199, https://openalex.org/W2034998253, https://openalex.org/W2032236671, https://openalex.org/W2039698284, https://openalex.org/W2265548632, https://openalex.org/W2132094049, https://openalex.org/W2122814649, https://openalex.org/W2002895508, https://openalex.org/W2528777321, https://openalex.org/W2069828036, https://openalex.org/W2102614609, https://openalex.org/W1983579172, https://openalex.org/W2066340747, https://openalex.org/W2966659986, https://openalex.org/W2295598076, https://openalex.org/W2951936974, https://openalex.org/W2282821441, https://openalex.org/W2328176404, https://openalex.org/W2073241381, https://openalex.org/W1971654961, https://openalex.org/W2075446217, https://openalex.org/W2142498929, https://openalex.org/W2809774430, https://openalex.org/W1486210018, https://openalex.org/W1557523978, https://openalex.org/W1518653822, https://openalex.org/W2900166205, https://openalex.org/W2058959574, https://openalex.org/W1964279546, https://openalex.org/W2036358650, https://openalex.org/W1983917169, https://openalex.org/W2044703612, https://openalex.org/W2075364587, https://openalex.org/W2877593361, https://openalex.org/W2092939498, https://openalex.org/W2122645140, https://openalex.org/W2893961618, https://openalex.org/W2070681520, https://openalex.org/W3121452939 |
| referenced_works_count | 40 |
| abstract_inverted_index.in | 13 |
| abstract_inverted_index.of | 7, 16 |
| abstract_inverted_index.on | 23, 37 |
| abstract_inverted_index.to | 28 |
| abstract_inverted_index.for | 33 |
| abstract_inverted_index.had | 10, 20 |
| abstract_inverted_index.has | 25 |
| abstract_inverted_index.the | 3, 17, 26 |
| abstract_inverted_index.who | 9 |
| abstract_inverted_index.ICU. | 14 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.that | 19 |
| abstract_inverted_index.great | 21 |
| abstract_inverted_index.model | 6 |
| abstract_inverted_index.staff | 36 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.their | 38 |
| abstract_inverted_index.factors | 18 |
| abstract_inverted_index.medical | 35 |
| abstract_inverted_index.provide | 29 |
| abstract_inverted_index.support | 32 |
| abstract_inverted_index.clinical | 34 |
| abstract_inverted_index.decision | 31 |
| abstract_inverted_index.patients | 8 |
| abstract_inverted_index.auxiliary | 30 |
| abstract_inverted_index.influence | 22 |
| abstract_inverted_index.mortality | 4, 24 |
| abstract_inverted_index.potential | 27 |
| abstract_inverted_index.undergone | 11 |
| abstract_inverted_index.craniotomy | 12 |
| abstract_inverted_index.practices. | 39 |
| abstract_inverted_index.predictive | 5 |
| abstract_inverted_index.established | 2 |
| abstract_inverted_index.Identification | 15 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5007872454 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I4210143087 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8799999952316284 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.77511481 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |