Machine Learning Approaches for Predictive Maintenance in IoT Devices Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.30574/wjaets.2025.17.1.1388
Predictive maintenance (PdM) has emerged as a crucial strategy in managing Internet of Things (IoT) devices. By anticipating failures and enabling timely repairs, predictive maintenance minimizes downtime, enhances operational efficiency, and reduces maintenance costs. With the rise of IoT, the amount of data generated by interconnected devices has escalated, presenting both an opportunity and a challenge in maintaining these systems. Machine learning (ML) techniques, including supervised learning, unsupervised learning, and reinforcement learning, have shown significant potential in harnessing the data from IoT devices to predict failures before they occur. This paper explores various machine learning approaches to predictive maintenance in IoT devices, including data preprocessing, feature extraction, and model training. We evaluate the performance of different machine learning algorithms such as decision trees, random forests, support vector machines (SVM), and deep learning models in terms of their accuracy, precision, and computational efficiency. Experimental results highlight the strengths and limitations of each approach. Moreover, we discuss the integration of these models within the IoT ecosystem to improve maintenance strategies. The paper concludes with insights on how machine learning can be further enhanced to provide more robust solutions for predictive maintenance in IoT devices.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.30574/wjaets.2025.17.1.1388
- OA Status
- hybrid
- OpenAlex ID
- https://openalex.org/W4415171612
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415171612Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.30574/wjaets.2025.17.1.1388Digital Object Identifier
- Title
-
Machine Learning Approaches for Predictive Maintenance in IoT DevicesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-14Full publication date if available
- Authors
-
Mazedur Rahman, A Razaq, Md. Tanvir Hossaın, Mohammad Asif ZamanList of authors in order
- Landing page
-
https://doi.org/10.30574/wjaets.2025.17.1.1388Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.30574/wjaets.2025.17.1.1388Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415171612 |
|---|---|
| doi | https://doi.org/10.30574/wjaets.2025.17.1.1388 |
| ids.doi | https://doi.org/10.30574/wjaets.2025.17.1.1388 |
| ids.openalex | https://openalex.org/W4415171612 |
| fwci | 0.0 |
| type | article |
| title | Machine Learning Approaches for Predictive Maintenance in IoT Devices |
| biblio.issue | 1 |
| biblio.volume | 17 |
| biblio.last_page | 170 |
| biblio.first_page | 157 |
| topics[0].id | https://openalex.org/T10876 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9039999842643738 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Fault Detection and Control Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.30574/wjaets.2025.17.1.1388 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210239011 |
| locations[0].source.issn | 2582-8266 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2582-8266 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | World Journal of Advanced Engineering Technology and Sciences |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | World Journal of Advanced Engineering Technology and Sciences |
| locations[0].landing_page_url | https://doi.org/10.30574/wjaets.2025.17.1.1388 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5049171731 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mazedur Rahman |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mazedur Rahman |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5113081936 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | A Razaq |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Amir Razaq |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5024498719 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8572-2560 |
| authorships[2].author.display_name | Md. Tanvir Hossaın |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Md. Tanvir Hossain |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5020883010 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7295-2102 |
| authorships[3].author.display_name | Mohammad Asif Zaman |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Md Towfiq Uz Zaman |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.30574/wjaets.2025.17.1.1388 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-15T00:00:00 |
| display_name | Machine Learning Approaches for Predictive Maintenance in IoT Devices |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10876 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9039999842643738 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Fault Detection and Control Systems |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.30574/wjaets.2025.17.1.1388 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210239011 |
| best_oa_location.source.issn | 2582-8266 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2582-8266 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | World Journal of Advanced Engineering Technology and Sciences |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | World Journal of Advanced Engineering Technology and Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.30574/wjaets.2025.17.1.1388 |
| primary_location.id | doi:10.30574/wjaets.2025.17.1.1388 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210239011 |
| primary_location.source.issn | 2582-8266 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2582-8266 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | World Journal of Advanced Engineering Technology and Sciences |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | World Journal of Advanced Engineering Technology and Sciences |
| primary_location.landing_page_url | https://doi.org/10.30574/wjaets.2025.17.1.1388 |
| publication_date | 2025-10-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 54 |
| abstract_inverted_index.By | 16 |
| abstract_inverted_index.We | 110 |
| abstract_inverted_index.an | 51 |
| abstract_inverted_index.as | 5, 120 |
| abstract_inverted_index.be | 178 |
| abstract_inverted_index.by | 44 |
| abstract_inverted_index.in | 9, 56, 76, 99, 133, 189 |
| abstract_inverted_index.of | 12, 37, 41, 114, 135, 149, 157 |
| abstract_inverted_index.on | 173 |
| abstract_inverted_index.to | 83, 96, 164, 181 |
| abstract_inverted_index.we | 153 |
| abstract_inverted_index.IoT | 81, 100, 162, 190 |
| abstract_inverted_index.The | 168 |
| abstract_inverted_index.and | 19, 30, 53, 69, 107, 129, 139, 147 |
| abstract_inverted_index.can | 177 |
| abstract_inverted_index.for | 186 |
| abstract_inverted_index.has | 3, 47 |
| abstract_inverted_index.how | 174 |
| abstract_inverted_index.the | 35, 39, 78, 112, 145, 155, 161 |
| abstract_inverted_index.(ML) | 62 |
| abstract_inverted_index.IoT, | 38 |
| abstract_inverted_index.This | 89 |
| abstract_inverted_index.With | 34 |
| abstract_inverted_index.both | 50 |
| abstract_inverted_index.data | 42, 79, 103 |
| abstract_inverted_index.deep | 130 |
| abstract_inverted_index.each | 150 |
| abstract_inverted_index.from | 80 |
| abstract_inverted_index.have | 72 |
| abstract_inverted_index.more | 183 |
| abstract_inverted_index.rise | 36 |
| abstract_inverted_index.such | 119 |
| abstract_inverted_index.they | 87 |
| abstract_inverted_index.with | 171 |
| abstract_inverted_index.(IoT) | 14 |
| abstract_inverted_index.(PdM) | 2 |
| abstract_inverted_index.model | 108 |
| abstract_inverted_index.paper | 90, 169 |
| abstract_inverted_index.shown | 73 |
| abstract_inverted_index.terms | 134 |
| abstract_inverted_index.their | 136 |
| abstract_inverted_index.these | 58, 158 |
| abstract_inverted_index.(SVM), | 128 |
| abstract_inverted_index.Things | 13 |
| abstract_inverted_index.amount | 40 |
| abstract_inverted_index.before | 86 |
| abstract_inverted_index.costs. | 33 |
| abstract_inverted_index.models | 132, 159 |
| abstract_inverted_index.occur. | 88 |
| abstract_inverted_index.random | 123 |
| abstract_inverted_index.robust | 184 |
| abstract_inverted_index.timely | 21 |
| abstract_inverted_index.trees, | 122 |
| abstract_inverted_index.vector | 126 |
| abstract_inverted_index.within | 160 |
| abstract_inverted_index.Machine | 60 |
| abstract_inverted_index.crucial | 7 |
| abstract_inverted_index.devices | 46, 82 |
| abstract_inverted_index.discuss | 154 |
| abstract_inverted_index.emerged | 4 |
| abstract_inverted_index.feature | 105 |
| abstract_inverted_index.further | 179 |
| abstract_inverted_index.improve | 165 |
| abstract_inverted_index.machine | 93, 116, 175 |
| abstract_inverted_index.predict | 84 |
| abstract_inverted_index.provide | 182 |
| abstract_inverted_index.reduces | 31 |
| abstract_inverted_index.results | 143 |
| abstract_inverted_index.support | 125 |
| abstract_inverted_index.various | 92 |
| abstract_inverted_index.Internet | 11 |
| abstract_inverted_index.decision | 121 |
| abstract_inverted_index.devices, | 101 |
| abstract_inverted_index.devices. | 15, 191 |
| abstract_inverted_index.enabling | 20 |
| abstract_inverted_index.enhanced | 180 |
| abstract_inverted_index.enhances | 27 |
| abstract_inverted_index.evaluate | 111 |
| abstract_inverted_index.explores | 91 |
| abstract_inverted_index.failures | 18, 85 |
| abstract_inverted_index.forests, | 124 |
| abstract_inverted_index.insights | 172 |
| abstract_inverted_index.learning | 61, 94, 117, 131, 176 |
| abstract_inverted_index.machines | 127 |
| abstract_inverted_index.managing | 10 |
| abstract_inverted_index.repairs, | 22 |
| abstract_inverted_index.strategy | 8 |
| abstract_inverted_index.systems. | 59 |
| abstract_inverted_index.Moreover, | 152 |
| abstract_inverted_index.accuracy, | 137 |
| abstract_inverted_index.approach. | 151 |
| abstract_inverted_index.challenge | 55 |
| abstract_inverted_index.concludes | 170 |
| abstract_inverted_index.different | 115 |
| abstract_inverted_index.downtime, | 26 |
| abstract_inverted_index.ecosystem | 163 |
| abstract_inverted_index.generated | 43 |
| abstract_inverted_index.highlight | 144 |
| abstract_inverted_index.including | 64, 102 |
| abstract_inverted_index.learning, | 66, 68, 71 |
| abstract_inverted_index.minimizes | 25 |
| abstract_inverted_index.potential | 75 |
| abstract_inverted_index.solutions | 185 |
| abstract_inverted_index.strengths | 146 |
| abstract_inverted_index.training. | 109 |
| abstract_inverted_index.Predictive | 0 |
| abstract_inverted_index.algorithms | 118 |
| abstract_inverted_index.approaches | 95 |
| abstract_inverted_index.escalated, | 48 |
| abstract_inverted_index.harnessing | 77 |
| abstract_inverted_index.precision, | 138 |
| abstract_inverted_index.predictive | 23, 97, 187 |
| abstract_inverted_index.presenting | 49 |
| abstract_inverted_index.supervised | 65 |
| abstract_inverted_index.efficiency, | 29 |
| abstract_inverted_index.efficiency. | 141 |
| abstract_inverted_index.extraction, | 106 |
| abstract_inverted_index.integration | 156 |
| abstract_inverted_index.limitations | 148 |
| abstract_inverted_index.maintaining | 57 |
| abstract_inverted_index.maintenance | 1, 24, 32, 98, 166, 188 |
| abstract_inverted_index.operational | 28 |
| abstract_inverted_index.opportunity | 52 |
| abstract_inverted_index.performance | 113 |
| abstract_inverted_index.significant | 74 |
| abstract_inverted_index.strategies. | 167 |
| abstract_inverted_index.techniques, | 63 |
| abstract_inverted_index.Experimental | 142 |
| abstract_inverted_index.anticipating | 17 |
| abstract_inverted_index.unsupervised | 67 |
| abstract_inverted_index.computational | 140 |
| abstract_inverted_index.reinforcement | 70 |
| abstract_inverted_index.interconnected | 45 |
| abstract_inverted_index.preprocessing, | 104 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.63171222 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |