Machine learning approaches to physical activity prediction in young children using accelerometer data Article Swipe
Early childhood development is arguably the most significant period in the course of life. It is widely recognized that physical activity (PA) during early childhood plays an influential role on current and future developments of the child [1]. Partially based on this evidence, the Australian Government has created the Physical Activity Recommendations which recommend that, among others, preschoolers should be physically active every day for at least three hours, spread throughout the day [1]. However, difficulties in accurately measuring physical activity in preschoolers have impeded the investigations in physical activity classifications using data modelling techniques and the use of such classifications in the estimation of the metabolic equivalents (METS1), a measure commonly used as a proxy for measuring the extent of the physical activity performed by a subject. Therefore the issue of quantifying the extent of physical activity performed by a child is transformed to an issue of physical activity classifications into categories, like “sedentary”, “light” activity, “medium” activity, “walking”, or “running”. Based on such classifications, the METS can be estimated, and as a result the daily recommended minimum METS can be monitored.\nThe research reported in this thesis is part of a larger research project which include the collection of raw data, over two separate and different small cohorts of young pre-school children, in 2014 (11 participants), and 2016 (16 participants) respectively, from accelerometry sensors mounted on various parts of the body. As these are pre-school children, they often did not adhere to the suggested activity, but instead engaged in unscripted activities during the 5 minute episodes of observations, thus introducing “noise” in the recordings. Despite such imperfection, the accelerometer recordings were labelled by the assigned activity type, irrespective of what the subject was doing during the episode thus challenging data driven modelling techniques.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://ro.uow.edu.au/theses1/1124
- https://ro.uow.edu.au/theses1/1124
- OA Status
- green
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3205344970
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3205344970Canonical identifier for this work in OpenAlex
- Title
-
Machine learning approaches to physical activity prediction in young children using accelerometer dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Tuc NguyenList of authors in order
- Landing page
-
https://ro.uow.edu.au/theses1/1124Publisher landing page
- PDF URL
-
https://ro.uow.edu.au/theses1/1124Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://ro.uow.edu.au/theses1/1124Direct OA link when available
- Concepts
-
Accelerometer, Machine learning, Computer science, Artificial intelligence, Physical activity, Physical medicine and rehabilitation, Medicine, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3205344970 |
|---|---|
| doi | |
| ids.mag | 3205344970 |
| ids.openalex | https://openalex.org/W3205344970 |
| fwci | 0.0 |
| type | article |
| title | Machine learning approaches to physical activity prediction in young children using accelerometer data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10352 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9128000140190125 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2737 |
| topics[0].subfield.display_name | Physiology |
| topics[0].display_name | Physical Activity and Health |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89805583 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7076537609100342 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192940 |
| concepts[0].display_name | Accelerometer |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5413095951080322 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5184440612792969 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4895654618740082 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C3020255362 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48319947719573975 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q747883 |
| concepts[4].display_name | Physical activity |
| concepts[5].id | https://openalex.org/C99508421 |
| concepts[5].level | 1 |
| concepts[5].score | 0.19367268681526184 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[5].display_name | Physical medicine and rehabilitation |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.17285773158073425 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C111919701 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[7].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/accelerometer |
| keywords[0].score | 0.7076537609100342 |
| keywords[0].display_name | Accelerometer |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.5413095951080322 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5184440612792969 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4895654618740082 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/physical-activity |
| keywords[4].score | 0.48319947719573975 |
| keywords[4].display_name | Physical activity |
| keywords[5].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[5].score | 0.19367268681526184 |
| keywords[5].display_name | Physical medicine and rehabilitation |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.17285773158073425 |
| keywords[6].display_name | Medicine |
| language | en |
| locations[0].id | pmh:oai:ro.uow.edu.au:theses1-2123 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400510 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Online (University of Wollongong) |
| locations[0].source.host_organization | https://openalex.org/I204824540 |
| locations[0].source.host_organization_name | University of Wollongong |
| locations[0].source.host_organization_lineage | https://openalex.org/I204824540 |
| locations[0].license | |
| locations[0].pdf_url | https://ro.uow.edu.au/theses1/1124 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | University of Wollongong Thesis Collection 2017+ |
| locations[0].landing_page_url | https://ro.uow.edu.au/theses1/1124 |
| locations[1].id | pmh:oai:figshare.com:article/27667212 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| locations[2].id | mag:3205344970 |
| locations[2].is_oa | False |
| locations[2].source | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://ro.uow.edu.au/cgi/viewcontent.cgi?article=2123&context=theses1 |
| authorships[0].author.id | https://openalex.org/A5109678731 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-4070-2888 |
| authorships[0].author.display_name | Tuc Nguyen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tuc Van Nguyen |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ro.uow.edu.au/theses1/1124 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine learning approaches to physical activity prediction in young children using accelerometer data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T10352 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9128000140190125 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2737 |
| primary_topic.subfield.display_name | Physiology |
| primary_topic.display_name | Physical Activity and Health |
| related_works | https://openalex.org/W2928645920, https://openalex.org/W2972437738, https://openalex.org/W3088933550, https://openalex.org/W3176503640, https://openalex.org/W2886089466, https://openalex.org/W2980351016, https://openalex.org/W3176697133, https://openalex.org/W2784293033, https://openalex.org/W2967076397, https://openalex.org/W3000671802, https://openalex.org/W3035844538, https://openalex.org/W2169996398, https://openalex.org/W2100038104, https://openalex.org/W3095538999, https://openalex.org/W2955168989, https://openalex.org/W2962958999, https://openalex.org/W2990498537, https://openalex.org/W2899177176, https://openalex.org/W2475625622, https://openalex.org/W3175508462 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:ro.uow.edu.au:theses1-2123 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400510 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Online (University of Wollongong) |
| best_oa_location.source.host_organization | https://openalex.org/I204824540 |
| best_oa_location.source.host_organization_name | University of Wollongong |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I204824540 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ro.uow.edu.au/theses1/1124 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | University of Wollongong Thesis Collection 2017+ |
| best_oa_location.landing_page_url | https://ro.uow.edu.au/theses1/1124 |
| primary_location.id | pmh:oai:ro.uow.edu.au:theses1-2123 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400510 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Online (University of Wollongong) |
| primary_location.source.host_organization | https://openalex.org/I204824540 |
| primary_location.source.host_organization_name | University of Wollongong |
| primary_location.source.host_organization_lineage | https://openalex.org/I204824540 |
| primary_location.license | |
| primary_location.pdf_url | https://ro.uow.edu.au/theses1/1124 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | University of Wollongong Thesis Collection 2017+ |
| primary_location.landing_page_url | https://ro.uow.edu.au/theses1/1124 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 254 |
| abstract_inverted_index.a | 109, 114, 126, 140, 173, 191 |
| abstract_inverted_index.As | 232 |
| abstract_inverted_index.It | 14 |
| abstract_inverted_index.an | 26, 145 |
| abstract_inverted_index.as | 113, 172 |
| abstract_inverted_index.at | 65 |
| abstract_inverted_index.be | 59, 169, 181 |
| abstract_inverted_index.by | 125, 139, 273 |
| abstract_inverted_index.in | 9, 76, 81, 87, 101, 185, 213, 249, 262 |
| abstract_inverted_index.is | 3, 15, 142, 188 |
| abstract_inverted_index.of | 12, 34, 98, 104, 120, 131, 135, 147, 190, 199, 209, 229, 257, 279 |
| abstract_inverted_index.on | 29, 40, 163, 226 |
| abstract_inverted_index.or | 160 |
| abstract_inverted_index.to | 144, 242 |
| abstract_inverted_index.(11 | 215 |
| abstract_inverted_index.(16 | 219 |
| abstract_inverted_index.and | 31, 95, 171, 205, 217 |
| abstract_inverted_index.are | 234 |
| abstract_inverted_index.but | 246 |
| abstract_inverted_index.can | 168, 180 |
| abstract_inverted_index.day | 63, 72 |
| abstract_inverted_index.did | 239 |
| abstract_inverted_index.for | 64, 116 |
| abstract_inverted_index.has | 46 |
| abstract_inverted_index.not | 240 |
| abstract_inverted_index.raw | 200 |
| abstract_inverted_index.the | 5, 10, 35, 43, 48, 71, 85, 96, 102, 105, 118, 121, 129, 133, 166, 175, 197, 230, 243, 253, 263, 268, 274, 281, 286 |
| abstract_inverted_index.two | 203 |
| abstract_inverted_index.use | 97 |
| abstract_inverted_index.was | 283 |
| abstract_inverted_index.(PA) | 21 |
| abstract_inverted_index.2014 | 214 |
| abstract_inverted_index.2016 | 218 |
| abstract_inverted_index.METS | 167, 179 |
| abstract_inverted_index.[1]. | 37, 73 |
| abstract_inverted_index.data | 92, 290 |
| abstract_inverted_index.from | 222 |
| abstract_inverted_index.have | 83 |
| abstract_inverted_index.into | 151 |
| abstract_inverted_index.like | 153 |
| abstract_inverted_index.most | 6 |
| abstract_inverted_index.over | 202 |
| abstract_inverted_index.part | 189 |
| abstract_inverted_index.role | 28 |
| abstract_inverted_index.such | 99, 164, 266 |
| abstract_inverted_index.that | 18 |
| abstract_inverted_index.they | 237 |
| abstract_inverted_index.this | 41, 186 |
| abstract_inverted_index.thus | 259, 288 |
| abstract_inverted_index.used | 112 |
| abstract_inverted_index.were | 271 |
| abstract_inverted_index.what | 280 |
| abstract_inverted_index.Based | 162 |
| abstract_inverted_index.Early | 0 |
| abstract_inverted_index.among | 55 |
| abstract_inverted_index.based | 39 |
| abstract_inverted_index.body. | 231 |
| abstract_inverted_index.child | 36, 141 |
| abstract_inverted_index.daily | 176 |
| abstract_inverted_index.data, | 201 |
| abstract_inverted_index.doing | 284 |
| abstract_inverted_index.early | 23 |
| abstract_inverted_index.every | 62 |
| abstract_inverted_index.issue | 130, 146 |
| abstract_inverted_index.least | 66 |
| abstract_inverted_index.life. | 13 |
| abstract_inverted_index.often | 238 |
| abstract_inverted_index.parts | 228 |
| abstract_inverted_index.plays | 25 |
| abstract_inverted_index.proxy | 115 |
| abstract_inverted_index.small | 207 |
| abstract_inverted_index.that, | 54 |
| abstract_inverted_index.these | 233 |
| abstract_inverted_index.three | 67 |
| abstract_inverted_index.type, | 277 |
| abstract_inverted_index.using | 91 |
| abstract_inverted_index.which | 52, 195 |
| abstract_inverted_index.young | 210 |
| abstract_inverted_index.active | 61 |
| abstract_inverted_index.adhere | 241 |
| abstract_inverted_index.course | 11 |
| abstract_inverted_index.driven | 291 |
| abstract_inverted_index.during | 22, 252, 285 |
| abstract_inverted_index.extent | 119, 134 |
| abstract_inverted_index.future | 32 |
| abstract_inverted_index.hours, | 68 |
| abstract_inverted_index.larger | 192 |
| abstract_inverted_index.minute | 255 |
| abstract_inverted_index.period | 8 |
| abstract_inverted_index.result | 174 |
| abstract_inverted_index.should | 58 |
| abstract_inverted_index.spread | 69 |
| abstract_inverted_index.thesis | 187 |
| abstract_inverted_index.widely | 16 |
| abstract_inverted_index.Despite | 265 |
| abstract_inverted_index.cohorts | 208 |
| abstract_inverted_index.created | 47 |
| abstract_inverted_index.current | 30 |
| abstract_inverted_index.engaged | 248 |
| abstract_inverted_index.episode | 287 |
| abstract_inverted_index.impeded | 84 |
| abstract_inverted_index.include | 196 |
| abstract_inverted_index.instead | 247 |
| abstract_inverted_index.measure | 110 |
| abstract_inverted_index.minimum | 178 |
| abstract_inverted_index.mounted | 225 |
| abstract_inverted_index.others, | 56 |
| abstract_inverted_index.project | 194 |
| abstract_inverted_index.sensors | 224 |
| abstract_inverted_index.subject | 282 |
| abstract_inverted_index.various | 227 |
| abstract_inverted_index.(METS1), | 108 |
| abstract_inverted_index.Activity | 50 |
| abstract_inverted_index.However, | 74 |
| abstract_inverted_index.Physical | 49 |
| abstract_inverted_index.activity | 20, 80, 89, 123, 137, 149, 276 |
| abstract_inverted_index.arguably | 4 |
| abstract_inverted_index.assigned | 275 |
| abstract_inverted_index.commonly | 111 |
| abstract_inverted_index.episodes | 256 |
| abstract_inverted_index.labelled | 272 |
| abstract_inverted_index.physical | 19, 79, 88, 122, 136, 148 |
| abstract_inverted_index.reported | 184 |
| abstract_inverted_index.research | 183, 193 |
| abstract_inverted_index.separate | 204 |
| abstract_inverted_index.subject. | 127 |
| abstract_inverted_index.Partially | 38 |
| abstract_inverted_index.Therefore | 128 |
| abstract_inverted_index.activity, | 156, 158, 245 |
| abstract_inverted_index.childhood | 1, 24 |
| abstract_inverted_index.children, | 212, 236 |
| abstract_inverted_index.different | 206 |
| abstract_inverted_index.evidence, | 42 |
| abstract_inverted_index.measuring | 78, 117 |
| abstract_inverted_index.metabolic | 106 |
| abstract_inverted_index.modelling | 93, 292 |
| abstract_inverted_index.performed | 124, 138 |
| abstract_inverted_index.recommend | 53 |
| abstract_inverted_index.suggested | 244 |
| abstract_inverted_index.Australian | 44 |
| abstract_inverted_index.Government | 45 |
| abstract_inverted_index.accurately | 77 |
| abstract_inverted_index.activities | 251 |
| abstract_inverted_index.collection | 198 |
| abstract_inverted_index.estimated, | 170 |
| abstract_inverted_index.estimation | 103 |
| abstract_inverted_index.physically | 60 |
| abstract_inverted_index.pre-school | 211, 235 |
| abstract_inverted_index.recognized | 17 |
| abstract_inverted_index.recordings | 270 |
| abstract_inverted_index.techniques | 94 |
| abstract_inverted_index.throughout | 70 |
| abstract_inverted_index.unscripted | 250 |
| abstract_inverted_index.categories, | 152 |
| abstract_inverted_index.challenging | 289 |
| abstract_inverted_index.development | 2 |
| abstract_inverted_index.equivalents | 107 |
| abstract_inverted_index.influential | 27 |
| abstract_inverted_index.introducing | 260 |
| abstract_inverted_index.quantifying | 132 |
| abstract_inverted_index.recommended | 177 |
| abstract_inverted_index.recordings. | 264 |
| abstract_inverted_index.significant | 7 |
| abstract_inverted_index.techniques. | 293 |
| abstract_inverted_index.transformed | 143 |
| abstract_inverted_index.“light” | 155 |
| abstract_inverted_index.“noise” | 261 |
| abstract_inverted_index.developments | 33 |
| abstract_inverted_index.difficulties | 75 |
| abstract_inverted_index.irrespective | 278 |
| abstract_inverted_index.preschoolers | 57, 82 |
| abstract_inverted_index.“medium” | 157 |
| abstract_inverted_index.accelerometer | 269 |
| abstract_inverted_index.accelerometry | 223 |
| abstract_inverted_index.imperfection, | 267 |
| abstract_inverted_index.observations, | 258 |
| abstract_inverted_index.participants) | 220 |
| abstract_inverted_index.respectively, | 221 |
| abstract_inverted_index.investigations | 86 |
| abstract_inverted_index.participants), | 216 |
| abstract_inverted_index.“running”. | 161 |
| abstract_inverted_index.“walking”, | 159 |
| abstract_inverted_index.Recommendations | 51 |
| abstract_inverted_index.classifications | 90, 100, 150 |
| abstract_inverted_index.monitored.\nThe | 182 |
| abstract_inverted_index.classifications, | 165 |
| abstract_inverted_index.“sedentary”, | 154 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5109678731 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.27172147 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |