Machine-learning-assisted joint optimization of impeller and volute for 6 MF-20 centrifugal fire extinguishers with three-dimension computational fluid dynamics and experiment Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.csite.2025.107140
Centrifugal fire extinguishers are crucial for forest fire prevention. However, traditional design and optimization methods are often hindered by the high dimensionality of design variables. This study introduces a novel three-dimensional modeling and impeller-volute joint optimization strategy for the 6 MF-20 centrifugal fire extinguisher, employing Machine Learning (ML) and Computational Fluid Dynamics (CFD) to overcome these limitations. We propose an AI-assisted framework, integrating a Back-Propagation Artificial Neural Network (BPANN) with the Non-dominated Sorting Genetic Algorithm II (NSGA-II), aimed at enhancing flow rate and efficiency. The framework is trained on a high-precision CFD dataset, enabling it to capture complex nonlinear relationships between design parameters and extinguisher performance. Hyper-parameters of the learning model are optimized using Bayesian Optimization algorithms. Comparative experiments compare the optimized impeller against the original counterpart. Numerical outcomes indicate that the optimization of 8 design parameters results in a 19.18 % increase in flow rate and an 18.76 % enhancement in efficiency within the impeller-volute joint optimization. Experimental performance enhancement of the optimized impellers is confirmed at 10.68 %. The standard deviations of the experimental data for the optimized impeller are approximately 0.003 and 0.007, significantly lower than those of the prototype impeller. This research underscores the significant potential of AI in the optimization of mechanical systems, with determination coefficients R2 for BPANN exceeding 0.95, indicating high model accuracy and reliability.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.csite.2025.107140
- OA Status
- gold
- References
- 41
- OpenAlex ID
- https://openalex.org/W4414572291
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414572291Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.csite.2025.107140Digital Object Identifier
- Title
-
Machine-learning-assisted joint optimization of impeller and volute for 6 MF-20 centrifugal fire extinguishers with three-dimension computational fluid dynamics and experimentWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-27Full publication date if available
- Authors
-
Biyi Cheng, Xinzheng Zhang, Zhiyuan Lu, L.L. Lao, B. Chen, Nuo Xu, Hongjun WangList of authors in order
- Landing page
-
https://doi.org/10.1016/j.csite.2025.107140Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.csite.2025.107140Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
41Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414572291 |
|---|---|
| doi | https://doi.org/10.1016/j.csite.2025.107140 |
| ids.doi | https://doi.org/10.1016/j.csite.2025.107140 |
| ids.openalex | https://openalex.org/W4414572291 |
| fwci | 0.0 |
| type | article |
| title | Machine-learning-assisted joint optimization of impeller and volute for 6 MF-20 centrifugal fire extinguishers with three-dimension computational fluid dynamics and experiment |
| biblio.issue | |
| biblio.volume | 75 |
| biblio.last_page | 107140 |
| biblio.first_page | 107140 |
| topics[0].id | https://openalex.org/T11619 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.989799976348877 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Combustion and Detonation Processes |
| topics[1].id | https://openalex.org/T10117 |
| topics[1].field.id | https://openalex.org/fields/15 |
| topics[1].field.display_name | Chemical Engineering |
| topics[1].score | 0.9851999878883362 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1507 |
| topics[1].subfield.display_name | Fluid Flow and Transfer Processes |
| topics[1].display_name | Advanced Combustion Engine Technologies |
| topics[2].id | https://openalex.org/T10553 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9843999743461609 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Combustion and flame dynamics |
| is_xpac | False |
| apc_list.value | 700 |
| apc_list.currency | USD |
| apc_list.value_usd | 700 |
| apc_paid.value | 700 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 700 |
| language | en |
| locations[0].id | doi:10.1016/j.csite.2025.107140 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764363796 |
| locations[0].source.issn | 2214-157X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2214-157X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Case Studies in Thermal Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Case Studies in Thermal Engineering |
| locations[0].landing_page_url | https://doi.org/10.1016/j.csite.2025.107140 |
| locations[1].id | pmh:oai:doaj.org/article:459c98061d70470bab4e3440f1bcb786 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Case Studies in Thermal Engineering, Vol 75, Iss , Pp 107140- (2025) |
| locations[1].landing_page_url | https://doaj.org/article/459c98061d70470bab4e3440f1bcb786 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101634512 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-9418-1879 |
| authorships[0].author.display_name | Biyi Cheng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Biyi Cheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5074016614 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8128-3273 |
| authorships[1].author.display_name | Xinzheng Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xinde Zhang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5016440911 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6860-3831 |
| authorships[2].author.display_name | Zhiyuan Lu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhibo Lu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5081690357 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | L.L. Lao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Leya Lao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5030402013 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | B. Chen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Baihao Chen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5045061732 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0745-8941 |
| authorships[5].author.display_name | Nuo Xu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Nuo Xu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100357108 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7280-2852 |
| authorships[6].author.display_name | Hongjun Wang |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Hongjun Wang |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.csite.2025.107140 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine-learning-assisted joint optimization of impeller and volute for 6 MF-20 centrifugal fire extinguishers with three-dimension computational fluid dynamics and experiment |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11619 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.989799976348877 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Combustion and Detonation Processes |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.csite.2025.107140 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764363796 |
| best_oa_location.source.issn | 2214-157X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2214-157X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Case Studies in Thermal Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Case Studies in Thermal Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.csite.2025.107140 |
| primary_location.id | doi:10.1016/j.csite.2025.107140 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764363796 |
| primary_location.source.issn | 2214-157X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2214-157X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Case Studies in Thermal Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Case Studies in Thermal Engineering |
| primary_location.landing_page_url | https://doi.org/10.1016/j.csite.2025.107140 |
| publication_date | 2025-09-27 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4376270005, https://openalex.org/W4385430797, https://openalex.org/W3168642813, https://openalex.org/W4377691652, https://openalex.org/W4296672473, https://openalex.org/W4405516108, https://openalex.org/W4389578961, https://openalex.org/W2018165281, https://openalex.org/W3023552473, https://openalex.org/W4394893955, https://openalex.org/W4405963752, https://openalex.org/W4400849736, https://openalex.org/W2334385306, https://openalex.org/W4388688804, https://openalex.org/W3103457376, https://openalex.org/W4409316584, https://openalex.org/W4319842759, https://openalex.org/W1978589594, https://openalex.org/W2001763096, https://openalex.org/W1967997629, https://openalex.org/W1999290826, https://openalex.org/W2073775990, https://openalex.org/W2734591141, https://openalex.org/W3151584942, https://openalex.org/W3197176991, https://openalex.org/W4310759438, https://openalex.org/W4292550191, https://openalex.org/W4405516054, https://openalex.org/W4377289601, https://openalex.org/W4312518337, https://openalex.org/W4312713127, https://openalex.org/W3191225206, https://openalex.org/W3197970745, https://openalex.org/W4406498703, https://openalex.org/W4405515958, https://openalex.org/W4402829513, https://openalex.org/W4381730859, https://openalex.org/W4404563925, https://openalex.org/W4403425501, https://openalex.org/W3083571691, https://openalex.org/W4389510006 |
| referenced_works_count | 41 |
| abstract_inverted_index.% | 141, 149 |
| abstract_inverted_index.6 | 39 |
| abstract_inverted_index.8 | 134 |
| abstract_inverted_index.a | 28, 63, 89, 139 |
| abstract_inverted_index.%. | 169 |
| abstract_inverted_index.AI | 201 |
| abstract_inverted_index.II | 75 |
| abstract_inverted_index.R2 | 211 |
| abstract_inverted_index.We | 57 |
| abstract_inverted_index.an | 59, 147 |
| abstract_inverted_index.at | 78, 167 |
| abstract_inverted_index.by | 18 |
| abstract_inverted_index.in | 138, 143, 151, 202 |
| abstract_inverted_index.is | 86, 165 |
| abstract_inverted_index.it | 94 |
| abstract_inverted_index.of | 22, 107, 133, 161, 173, 190, 200, 205 |
| abstract_inverted_index.on | 88 |
| abstract_inverted_index.to | 53, 95 |
| abstract_inverted_index.CFD | 91 |
| abstract_inverted_index.The | 84, 170 |
| abstract_inverted_index.and | 12, 32, 48, 82, 103, 146, 184, 220 |
| abstract_inverted_index.are | 3, 15, 111, 181 |
| abstract_inverted_index.for | 5, 37, 177, 212 |
| abstract_inverted_index.the | 19, 38, 70, 108, 120, 124, 131, 154, 162, 174, 178, 191, 197, 203 |
| abstract_inverted_index.(ML) | 47 |
| abstract_inverted_index.This | 25, 194 |
| abstract_inverted_index.data | 176 |
| abstract_inverted_index.fire | 1, 7, 42 |
| abstract_inverted_index.flow | 80, 144 |
| abstract_inverted_index.high | 20, 217 |
| abstract_inverted_index.rate | 81, 145 |
| abstract_inverted_index.than | 188 |
| abstract_inverted_index.that | 130 |
| abstract_inverted_index.with | 69, 208 |
| abstract_inverted_index.(CFD) | 52 |
| abstract_inverted_index.0.003 | 183 |
| abstract_inverted_index.0.95, | 215 |
| abstract_inverted_index.10.68 | 168 |
| abstract_inverted_index.18.76 | 148 |
| abstract_inverted_index.19.18 | 140 |
| abstract_inverted_index.BPANN | 213 |
| abstract_inverted_index.Fluid | 50 |
| abstract_inverted_index.MF-20 | 40 |
| abstract_inverted_index.aimed | 77 |
| abstract_inverted_index.joint | 34, 156 |
| abstract_inverted_index.lower | 187 |
| abstract_inverted_index.model | 110, 218 |
| abstract_inverted_index.novel | 29 |
| abstract_inverted_index.often | 16 |
| abstract_inverted_index.study | 26 |
| abstract_inverted_index.these | 55 |
| abstract_inverted_index.those | 189 |
| abstract_inverted_index.using | 113 |
| abstract_inverted_index.0.007, | 185 |
| abstract_inverted_index.Neural | 66 |
| abstract_inverted_index.design | 11, 23, 101, 135 |
| abstract_inverted_index.forest | 6 |
| abstract_inverted_index.within | 153 |
| abstract_inverted_index.(BPANN) | 68 |
| abstract_inverted_index.Genetic | 73 |
| abstract_inverted_index.Machine | 45 |
| abstract_inverted_index.Network | 67 |
| abstract_inverted_index.Sorting | 72 |
| abstract_inverted_index.against | 123 |
| abstract_inverted_index.between | 100 |
| abstract_inverted_index.capture | 96 |
| abstract_inverted_index.compare | 119 |
| abstract_inverted_index.complex | 97 |
| abstract_inverted_index.crucial | 4 |
| abstract_inverted_index.methods | 14 |
| abstract_inverted_index.propose | 58 |
| abstract_inverted_index.results | 137 |
| abstract_inverted_index.trained | 87 |
| abstract_inverted_index.Bayesian | 114 |
| abstract_inverted_index.Dynamics | 51 |
| abstract_inverted_index.However, | 9 |
| abstract_inverted_index.Learning | 46 |
| abstract_inverted_index.accuracy | 219 |
| abstract_inverted_index.dataset, | 92 |
| abstract_inverted_index.enabling | 93 |
| abstract_inverted_index.hindered | 17 |
| abstract_inverted_index.impeller | 122, 180 |
| abstract_inverted_index.increase | 142 |
| abstract_inverted_index.indicate | 129 |
| abstract_inverted_index.learning | 109 |
| abstract_inverted_index.modeling | 31 |
| abstract_inverted_index.original | 125 |
| abstract_inverted_index.outcomes | 128 |
| abstract_inverted_index.overcome | 54 |
| abstract_inverted_index.research | 195 |
| abstract_inverted_index.standard | 171 |
| abstract_inverted_index.strategy | 36 |
| abstract_inverted_index.systems, | 207 |
| abstract_inverted_index.Algorithm | 74 |
| abstract_inverted_index.Numerical | 127 |
| abstract_inverted_index.confirmed | 166 |
| abstract_inverted_index.employing | 44 |
| abstract_inverted_index.enhancing | 79 |
| abstract_inverted_index.exceeding | 214 |
| abstract_inverted_index.framework | 85 |
| abstract_inverted_index.impeller. | 193 |
| abstract_inverted_index.impellers | 164 |
| abstract_inverted_index.nonlinear | 98 |
| abstract_inverted_index.optimized | 112, 121, 163, 179 |
| abstract_inverted_index.potential | 199 |
| abstract_inverted_index.prototype | 192 |
| abstract_inverted_index.(NSGA-II), | 76 |
| abstract_inverted_index.Artificial | 65 |
| abstract_inverted_index.deviations | 172 |
| abstract_inverted_index.efficiency | 152 |
| abstract_inverted_index.framework, | 61 |
| abstract_inverted_index.indicating | 216 |
| abstract_inverted_index.introduces | 27 |
| abstract_inverted_index.mechanical | 206 |
| abstract_inverted_index.parameters | 102, 136 |
| abstract_inverted_index.variables. | 24 |
| abstract_inverted_index.AI-assisted | 60 |
| abstract_inverted_index.Centrifugal | 0 |
| abstract_inverted_index.Comparative | 117 |
| abstract_inverted_index.algorithms. | 116 |
| abstract_inverted_index.centrifugal | 41 |
| abstract_inverted_index.efficiency. | 83 |
| abstract_inverted_index.enhancement | 150, 160 |
| abstract_inverted_index.experiments | 118 |
| abstract_inverted_index.integrating | 62 |
| abstract_inverted_index.performance | 159 |
| abstract_inverted_index.prevention. | 8 |
| abstract_inverted_index.significant | 198 |
| abstract_inverted_index.traditional | 10 |
| abstract_inverted_index.underscores | 196 |
| abstract_inverted_index.Experimental | 158 |
| abstract_inverted_index.Optimization | 115 |
| abstract_inverted_index.coefficients | 210 |
| abstract_inverted_index.counterpart. | 126 |
| abstract_inverted_index.experimental | 175 |
| abstract_inverted_index.extinguisher | 104 |
| abstract_inverted_index.limitations. | 56 |
| abstract_inverted_index.optimization | 13, 35, 132, 204 |
| abstract_inverted_index.performance. | 105 |
| abstract_inverted_index.reliability. | 221 |
| abstract_inverted_index.Computational | 49 |
| abstract_inverted_index.Non-dominated | 71 |
| abstract_inverted_index.approximately | 182 |
| abstract_inverted_index.determination | 209 |
| abstract_inverted_index.extinguisher, | 43 |
| abstract_inverted_index.extinguishers | 2 |
| abstract_inverted_index.optimization. | 157 |
| abstract_inverted_index.relationships | 99 |
| abstract_inverted_index.significantly | 186 |
| abstract_inverted_index.dimensionality | 21 |
| abstract_inverted_index.high-precision | 90 |
| abstract_inverted_index.impeller-volute | 33, 155 |
| abstract_inverted_index.Back-Propagation | 64 |
| abstract_inverted_index.Hyper-parameters | 106 |
| abstract_inverted_index.three-dimensional | 30 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.27651817 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |