Machine Learning-Based Comparative Analysis on Direct and Indirect Mapping of Soil Texture Types Through Soil Particle Size Fractions Using Multi-Source Remote Sensing Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/agriculture15131395
Soil texture, defined by the proportions of sand, silt, and clay particles in the soil, is one of the most essential physical properties of soil. High-resolution soil texture data can provide critical parameter support for soil hydrological modeling, agricultural production management, and ecosystem assessment. In digital soil mapping, previous studies often predicted the sand, silt, and clay contents in soil and then indirectly calculated soil texture. Currently, approaches that directly map soil texture by classification modeling are gaining increasing attention due to the decreased error from data conversion, but few studies have systematically compared these two methods yet. In this study, we comprehensively assessed the performance of direct and indirect predicting soil texture using four machine learning algorithms (e.g., extreme gradient boosting, random forest, gradient boosting decision tree, and extremely randomized tree) with 190 covariates from the Digital Elevation Model, Sentinel-1/2 satellite images, and classification maps and generated a 10 m resolution soil texture map based on 405 topsoil (0–20 cm) sample data collected in Suichuan County, China. The results showed that compared with indirect predictions, direct predictions improved overall accuracy (OA) by 20.57–44.19% and the Kappa coefficient (Kappa) by 0.220–0.402. Among the models used, the XGB model achieved the highest accuracy (OA: 0.948; Kappa: 0.931) and the lowest uncertainty (confusion index: 0.052). The direct prediction map (nine classes recorded) exhibited more detailed and diverse spatial distribution patterns than the indirect prediction map (six classes recorded), aligning better with the actual environment. Based on accuracy validation and spatial distribution, the performance of the XGB model was best during direct prediction. The Shapley additive explanation from the XGB model revealed that the normalized height and stream power indices were the most significant factors driving the soil texture in the study area. Our results provide a reference for future studies on soil texture mapping using machine learning models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/agriculture15131395
- https://www.mdpi.com/2077-0472/15/13/1395/pdf?version=1751104801
- OA Status
- gold
- Cited By
- 2
- References
- 82
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411832798
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411832798Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/agriculture15131395Digital Object Identifier
- Title
-
Machine Learning-Based Comparative Analysis on Direct and Indirect Mapping of Soil Texture Types Through Soil Particle Size Fractions Using Multi-Source Remote SensingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-28Full publication date if available
- Authors
-
Jia Liu, Yingcong Ye, Cui Wang, Songchao Chen, Yameng Jiang, Guo Xi, Yefeng JiangList of authors in order
- Landing page
-
https://doi.org/10.3390/agriculture15131395Publisher landing page
- PDF URL
-
https://www.mdpi.com/2077-0472/15/13/1395/pdf?version=1751104801Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2077-0472/15/13/1395/pdf?version=1751104801Direct OA link when available
- Concepts
-
Soil texture, Texture (cosmology), Particle size, Soil classification, Particle (ecology), Environmental science, Biological system, Soil science, Pattern recognition (psychology), Remote sensing, Computer science, Mathematics, Artificial intelligence, Soil water, Geology, Biology, Ecology, Engineering, Image (mathematics), Chemical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
82Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411832798 |
|---|---|
| doi | https://doi.org/10.3390/agriculture15131395 |
| ids.doi | https://doi.org/10.3390/agriculture15131395 |
| ids.openalex | https://openalex.org/W4411832798 |
| fwci | 4.08287243 |
| type | article |
| title | Machine Learning-Based Comparative Analysis on Direct and Indirect Mapping of Soil Texture Types Through Soil Particle Size Fractions Using Multi-Source Remote Sensing |
| biblio.issue | 13 |
| biblio.volume | 15 |
| biblio.last_page | 1395 |
| biblio.first_page | 1395 |
| topics[0].id | https://openalex.org/T10770 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Soil Geostatistics and Mapping |
| topics[1].id | https://openalex.org/T13058 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.986299991607666 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2308 |
| topics[1].subfield.display_name | Management, Monitoring, Policy and Law |
| topics[1].display_name | Soil and Land Suitability Analysis |
| topics[2].id | https://openalex.org/T10889 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9860000014305115 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1111 |
| topics[2].subfield.display_name | Soil Science |
| topics[2].display_name | Soil erosion and sediment transport |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C175963888 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8005926609039307 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5026010 |
| concepts[0].display_name | Soil texture |
| concepts[1].id | https://openalex.org/C2781195486 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6204906702041626 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q289436 |
| concepts[1].display_name | Texture (cosmology) |
| concepts[2].id | https://openalex.org/C187530423 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5277581810951233 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7140503 |
| concepts[2].display_name | Particle size |
| concepts[3].id | https://openalex.org/C152494472 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4817807376384735 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q386963 |
| concepts[3].display_name | Soil classification |
| concepts[4].id | https://openalex.org/C2778517922 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48093312978744507 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7140482 |
| concepts[4].display_name | Particle (ecology) |
| concepts[5].id | https://openalex.org/C39432304 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4806607961654663 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[5].display_name | Environmental science |
| concepts[6].id | https://openalex.org/C186060115 |
| concepts[6].level | 1 |
| concepts[6].score | 0.46059027314186096 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[6].display_name | Biological system |
| concepts[7].id | https://openalex.org/C159390177 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4550352096557617 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9161265 |
| concepts[7].display_name | Soil science |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44416847825050354 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C62649853 |
| concepts[9].level | 1 |
| concepts[9].score | 0.37389013171195984 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[9].display_name | Remote sensing |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3637908101081848 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.36135706305503845 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3540198802947998 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C159750122 |
| concepts[13].level | 2 |
| concepts[13].score | 0.22056764364242554 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q96621023 |
| concepts[13].display_name | Soil water |
| concepts[14].id | https://openalex.org/C127313418 |
| concepts[14].level | 0 |
| concepts[14].score | 0.19181761145591736 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[14].display_name | Geology |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.16121706366539001 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C18903297 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1408313512802124 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[16].display_name | Ecology |
| concepts[17].id | https://openalex.org/C127413603 |
| concepts[17].level | 0 |
| concepts[17].score | 0.11973187327384949 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[17].display_name | Engineering |
| concepts[18].id | https://openalex.org/C115961682 |
| concepts[18].level | 2 |
| concepts[18].score | 0.11074447631835938 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[18].display_name | Image (mathematics) |
| concepts[19].id | https://openalex.org/C42360764 |
| concepts[19].level | 1 |
| concepts[19].score | 0.07932582497596741 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q83588 |
| concepts[19].display_name | Chemical engineering |
| keywords[0].id | https://openalex.org/keywords/soil-texture |
| keywords[0].score | 0.8005926609039307 |
| keywords[0].display_name | Soil texture |
| keywords[1].id | https://openalex.org/keywords/texture |
| keywords[1].score | 0.6204906702041626 |
| keywords[1].display_name | Texture (cosmology) |
| keywords[2].id | https://openalex.org/keywords/particle-size |
| keywords[2].score | 0.5277581810951233 |
| keywords[2].display_name | Particle size |
| keywords[3].id | https://openalex.org/keywords/soil-classification |
| keywords[3].score | 0.4817807376384735 |
| keywords[3].display_name | Soil classification |
| keywords[4].id | https://openalex.org/keywords/particle |
| keywords[4].score | 0.48093312978744507 |
| keywords[4].display_name | Particle (ecology) |
| keywords[5].id | https://openalex.org/keywords/environmental-science |
| keywords[5].score | 0.4806607961654663 |
| keywords[5].display_name | Environmental science |
| keywords[6].id | https://openalex.org/keywords/biological-system |
| keywords[6].score | 0.46059027314186096 |
| keywords[6].display_name | Biological system |
| keywords[7].id | https://openalex.org/keywords/soil-science |
| keywords[7].score | 0.4550352096557617 |
| keywords[7].display_name | Soil science |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.44416847825050354 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/remote-sensing |
| keywords[9].score | 0.37389013171195984 |
| keywords[9].display_name | Remote sensing |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.3637908101081848 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.36135706305503845 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.3540198802947998 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/soil-water |
| keywords[13].score | 0.22056764364242554 |
| keywords[13].display_name | Soil water |
| keywords[14].id | https://openalex.org/keywords/geology |
| keywords[14].score | 0.19181761145591736 |
| keywords[14].display_name | Geology |
| keywords[15].id | https://openalex.org/keywords/biology |
| keywords[15].score | 0.16121706366539001 |
| keywords[15].display_name | Biology |
| keywords[16].id | https://openalex.org/keywords/ecology |
| keywords[16].score | 0.1408313512802124 |
| keywords[16].display_name | Ecology |
| keywords[17].id | https://openalex.org/keywords/engineering |
| keywords[17].score | 0.11973187327384949 |
| keywords[17].display_name | Engineering |
| keywords[18].id | https://openalex.org/keywords/image |
| keywords[18].score | 0.11074447631835938 |
| keywords[18].display_name | Image (mathematics) |
| keywords[19].id | https://openalex.org/keywords/chemical-engineering |
| keywords[19].score | 0.07932582497596741 |
| keywords[19].display_name | Chemical engineering |
| language | en |
| locations[0].id | doi:10.3390/agriculture15131395 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202585 |
| locations[0].source.issn | 2077-0472 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2077-0472 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Agriculture |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2077-0472/15/13/1395/pdf?version=1751104801 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Agriculture |
| locations[0].landing_page_url | https://doi.org/10.3390/agriculture15131395 |
| locations[1].id | pmh:oai:doaj.org/article:36191a4c60dc4c79a1ac78183c18559e |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Agriculture, Vol 15, Iss 13, p 1395 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/36191a4c60dc4c79a1ac78183c18559e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100409675 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7895-4339 |
| authorships[0].author.display_name | Jia Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74837319 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China |
| authorships[0].institutions[0].id | https://openalex.org/I74837319 |
| authorships[0].institutions[0].ror | https://ror.org/00dc7s858 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I74837319 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Jiangxi Agricultural University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jia Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China |
| authorships[1].author.id | https://openalex.org/A5067743067 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6158-4482 |
| authorships[1].author.display_name | Yingcong Ye |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I74837319 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China |
| authorships[1].institutions[0].id | https://openalex.org/I74837319 |
| authorships[1].institutions[0].ror | https://ror.org/00dc7s858 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I74837319 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Jiangxi Agricultural University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yingcong Ye |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China |
| authorships[2].author.id | https://openalex.org/A5100608297 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7446-6685 |
| authorships[2].author.display_name | Cui Wang |
| authorships[2].affiliations[0].raw_affiliation_string | Geographic Information Engineering Brigade, Jiangxi Provincial Bureau of Geology, Nanchang 330001, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cui Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Geographic Information Engineering Brigade, Jiangxi Provincial Bureau of Geology, Nanchang 330001, China |
| authorships[3].author.id | https://openalex.org/A5080056117 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1245-0482 |
| authorships[3].author.display_name | Songchao Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China |
| authorships[3].institutions[0].id | https://openalex.org/I76130692 |
| authorships[3].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Zhejiang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Songchao Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China |
| authorships[4].author.id | https://openalex.org/A5102685971 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yameng Jiang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I74837319 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China |
| authorships[4].institutions[0].id | https://openalex.org/I74837319 |
| authorships[4].institutions[0].ror | https://ror.org/00dc7s858 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I74837319 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Jiangxi Agricultural University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yameng Jiang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China |
| authorships[5].author.id | https://openalex.org/A5102845649 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3458-8426 |
| authorships[5].author.display_name | Guo Xi |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I74837319 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China |
| authorships[5].institutions[0].id | https://openalex.org/I74837319 |
| authorships[5].institutions[0].ror | https://ror.org/00dc7s858 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I74837319 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Jiangxi Agricultural University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xi Guo |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China |
| authorships[6].author.id | https://openalex.org/A5035969309 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1804-3095 |
| authorships[6].author.display_name | Yefeng Jiang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I74837319 |
| authorships[6].affiliations[0].raw_affiliation_string | College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China |
| authorships[6].institutions[0].id | https://openalex.org/I74837319 |
| authorships[6].institutions[0].ror | https://ror.org/00dc7s858 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I74837319 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Jiangxi Agricultural University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yefeng Jiang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2077-0472/15/13/1395/pdf?version=1751104801 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine Learning-Based Comparative Analysis on Direct and Indirect Mapping of Soil Texture Types Through Soil Particle Size Fractions Using Multi-Source Remote Sensing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10770 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Soil Geostatistics and Mapping |
| related_works | https://openalex.org/W27388904, https://openalex.org/W4409104137, https://openalex.org/W266593343, https://openalex.org/W2391110961, https://openalex.org/W2352848447, https://openalex.org/W2389605879, https://openalex.org/W2993133225, https://openalex.org/W3034357547, https://openalex.org/W2526361093, https://openalex.org/W4387261887 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/agriculture15131395 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202585 |
| best_oa_location.source.issn | 2077-0472 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2077-0472 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Agriculture |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2077-0472/15/13/1395/pdf?version=1751104801 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Agriculture |
| best_oa_location.landing_page_url | https://doi.org/10.3390/agriculture15131395 |
| primary_location.id | doi:10.3390/agriculture15131395 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202585 |
| primary_location.source.issn | 2077-0472 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2077-0472 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Agriculture |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2077-0472/15/13/1395/pdf?version=1751104801 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Agriculture |
| primary_location.landing_page_url | https://doi.org/10.3390/agriculture15131395 |
| publication_date | 2025-06-28 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2012486807, https://openalex.org/W2963221827, https://openalex.org/W3003029456, https://openalex.org/W18678914, https://openalex.org/W2498963908, https://openalex.org/W6716644788, https://openalex.org/W4280635548, https://openalex.org/W2105101734, https://openalex.org/W2054325787, https://openalex.org/W3215367274, https://openalex.org/W2066626803, https://openalex.org/W2049842380, https://openalex.org/W2051378084, https://openalex.org/W3129154977, https://openalex.org/W2014773377, https://openalex.org/W2583931072, https://openalex.org/W6765692331, https://openalex.org/W4392357996, https://openalex.org/W4390744800, https://openalex.org/W2925175411, https://openalex.org/W2950294063, https://openalex.org/W3110968815, https://openalex.org/W2290077960, https://openalex.org/W2527323007, https://openalex.org/W2921398857, https://openalex.org/W2767202613, https://openalex.org/W2951244100, https://openalex.org/W2991645510, https://openalex.org/W1964852668, https://openalex.org/W3001537280, https://openalex.org/W4385175235, https://openalex.org/W2047020168, https://openalex.org/W2763435325, https://openalex.org/W3007516967, https://openalex.org/W4399699593, https://openalex.org/W4401876898, https://openalex.org/W4387393480, https://openalex.org/W2956038373, https://openalex.org/W4294225093, https://openalex.org/W4385702482, https://openalex.org/W4309685829, https://openalex.org/W2911323052, https://openalex.org/W4387819408, https://openalex.org/W2891385203, https://openalex.org/W4322490956, https://openalex.org/W6622788192, https://openalex.org/W2745131289, https://openalex.org/W2893324711, https://openalex.org/W2923985287, https://openalex.org/W6809980816, https://openalex.org/W6859339365, https://openalex.org/W2028555769, https://openalex.org/W2920560278, https://openalex.org/W2911964244, https://openalex.org/W2295598076, https://openalex.org/W2056132907, https://openalex.org/W2614293472, https://openalex.org/W4292477447, https://openalex.org/W4210699701, https://openalex.org/W2089777064, https://openalex.org/W2102148524, https://openalex.org/W3017261357, https://openalex.org/W3137114661, https://openalex.org/W2953707985, https://openalex.org/W3000429356, https://openalex.org/W2069262297, https://openalex.org/W4392155100, https://openalex.org/W3159072303, https://openalex.org/W4224924188, https://openalex.org/W2009359839, https://openalex.org/W4253505536, https://openalex.org/W3024780352, https://openalex.org/W2111718697, https://openalex.org/W2064646141, https://openalex.org/W3160359183, https://openalex.org/W4284962752, https://openalex.org/W4388036459, https://openalex.org/W4389482862, https://openalex.org/W2416544886, https://openalex.org/W4225512360, https://openalex.org/W2962274534, https://openalex.org/W791978432 |
| referenced_works_count | 82 |
| abstract_inverted_index.a | 148, 293 |
| abstract_inverted_index.m | 150 |
| abstract_inverted_index.10 | 149 |
| abstract_inverted_index.In | 44, 98 |
| abstract_inverted_index.by | 3, 73, 182, 189 |
| abstract_inverted_index.in | 12, 58, 164, 286 |
| abstract_inverted_index.is | 15 |
| abstract_inverted_index.of | 6, 17, 23, 106, 251 |
| abstract_inverted_index.on | 156, 243, 298 |
| abstract_inverted_index.to | 81 |
| abstract_inverted_index.we | 101 |
| abstract_inverted_index.190 | 133 |
| abstract_inverted_index.405 | 157 |
| abstract_inverted_index.Our | 290 |
| abstract_inverted_index.The | 168, 213, 260 |
| abstract_inverted_index.XGB | 196, 253, 266 |
| abstract_inverted_index.and | 9, 41, 55, 60, 108, 128, 143, 146, 184, 206, 223, 246, 273 |
| abstract_inverted_index.are | 76 |
| abstract_inverted_index.but | 88 |
| abstract_inverted_index.can | 29 |
| abstract_inverted_index.cm) | 160 |
| abstract_inverted_index.due | 80 |
| abstract_inverted_index.few | 89 |
| abstract_inverted_index.for | 34, 295 |
| abstract_inverted_index.map | 70, 154, 216, 232 |
| abstract_inverted_index.one | 16 |
| abstract_inverted_index.the | 4, 13, 18, 52, 82, 104, 136, 185, 192, 195, 199, 207, 229, 239, 249, 252, 265, 270, 278, 283, 287 |
| abstract_inverted_index.two | 95 |
| abstract_inverted_index.was | 255 |
| abstract_inverted_index.(OA) | 181 |
| abstract_inverted_index.(OA: | 202 |
| abstract_inverted_index.(six | 233 |
| abstract_inverted_index.Soil | 0 |
| abstract_inverted_index.best | 256 |
| abstract_inverted_index.clay | 10, 56 |
| abstract_inverted_index.data | 28, 86, 162 |
| abstract_inverted_index.four | 114 |
| abstract_inverted_index.from | 85, 135, 264 |
| abstract_inverted_index.have | 91 |
| abstract_inverted_index.maps | 145 |
| abstract_inverted_index.more | 221 |
| abstract_inverted_index.most | 19, 279 |
| abstract_inverted_index.soil | 26, 35, 46, 59, 64, 71, 111, 152, 284, 299 |
| abstract_inverted_index.than | 228 |
| abstract_inverted_index.that | 68, 171, 269 |
| abstract_inverted_index.then | 61 |
| abstract_inverted_index.this | 99 |
| abstract_inverted_index.were | 277 |
| abstract_inverted_index.with | 132, 173, 238 |
| abstract_inverted_index.yet. | 97 |
| abstract_inverted_index.(nine | 217 |
| abstract_inverted_index.Among | 191 |
| abstract_inverted_index.Based | 242 |
| abstract_inverted_index.Kappa | 186 |
| abstract_inverted_index.area. | 289 |
| abstract_inverted_index.based | 155 |
| abstract_inverted_index.error | 84 |
| abstract_inverted_index.model | 197, 254, 267 |
| abstract_inverted_index.often | 50 |
| abstract_inverted_index.power | 275 |
| abstract_inverted_index.sand, | 7, 53 |
| abstract_inverted_index.silt, | 8, 54 |
| abstract_inverted_index.soil, | 14 |
| abstract_inverted_index.soil. | 24 |
| abstract_inverted_index.study | 288 |
| abstract_inverted_index.these | 94 |
| abstract_inverted_index.tree) | 131 |
| abstract_inverted_index.tree, | 127 |
| abstract_inverted_index.used, | 194 |
| abstract_inverted_index.using | 113, 302 |
| abstract_inverted_index.(e.g., | 118 |
| abstract_inverted_index.0.931) | 205 |
| abstract_inverted_index.0.948; | 203 |
| abstract_inverted_index.China. | 167 |
| abstract_inverted_index.Kappa: | 204 |
| abstract_inverted_index.Model, | 139 |
| abstract_inverted_index.actual | 240 |
| abstract_inverted_index.better | 237 |
| abstract_inverted_index.direct | 107, 176, 214, 258 |
| abstract_inverted_index.during | 257 |
| abstract_inverted_index.future | 296 |
| abstract_inverted_index.height | 272 |
| abstract_inverted_index.index: | 211 |
| abstract_inverted_index.lowest | 208 |
| abstract_inverted_index.models | 193 |
| abstract_inverted_index.random | 122 |
| abstract_inverted_index.sample | 161 |
| abstract_inverted_index.showed | 170 |
| abstract_inverted_index.stream | 274 |
| abstract_inverted_index.study, | 100 |
| abstract_inverted_index.(0–20 | 159 |
| abstract_inverted_index.(Kappa) | 188 |
| abstract_inverted_index.0.052). | 212 |
| abstract_inverted_index.County, | 166 |
| abstract_inverted_index.Digital | 137 |
| abstract_inverted_index.Shapley | 261 |
| abstract_inverted_index.classes | 218, 234 |
| abstract_inverted_index.defined | 2 |
| abstract_inverted_index.digital | 45 |
| abstract_inverted_index.diverse | 224 |
| abstract_inverted_index.driving | 282 |
| abstract_inverted_index.extreme | 119 |
| abstract_inverted_index.factors | 281 |
| abstract_inverted_index.forest, | 123 |
| abstract_inverted_index.gaining | 77 |
| abstract_inverted_index.highest | 200 |
| abstract_inverted_index.images, | 142 |
| abstract_inverted_index.indices | 276 |
| abstract_inverted_index.machine | 115, 303 |
| abstract_inverted_index.mapping | 301 |
| abstract_inverted_index.methods | 96 |
| abstract_inverted_index.models. | 305 |
| abstract_inverted_index.overall | 179 |
| abstract_inverted_index.provide | 30, 292 |
| abstract_inverted_index.results | 169, 291 |
| abstract_inverted_index.spatial | 225, 247 |
| abstract_inverted_index.studies | 49, 90, 297 |
| abstract_inverted_index.support | 33 |
| abstract_inverted_index.texture | 27, 72, 112, 153, 285, 300 |
| abstract_inverted_index.topsoil | 158 |
| abstract_inverted_index.Suichuan | 165 |
| abstract_inverted_index.accuracy | 180, 201, 244 |
| abstract_inverted_index.achieved | 198 |
| abstract_inverted_index.additive | 262 |
| abstract_inverted_index.aligning | 236 |
| abstract_inverted_index.assessed | 103 |
| abstract_inverted_index.boosting | 125 |
| abstract_inverted_index.compared | 93, 172 |
| abstract_inverted_index.contents | 57 |
| abstract_inverted_index.critical | 31 |
| abstract_inverted_index.decision | 126 |
| abstract_inverted_index.detailed | 222 |
| abstract_inverted_index.directly | 69 |
| abstract_inverted_index.gradient | 120, 124 |
| abstract_inverted_index.improved | 178 |
| abstract_inverted_index.indirect | 109, 174, 230 |
| abstract_inverted_index.learning | 116, 304 |
| abstract_inverted_index.mapping, | 47 |
| abstract_inverted_index.modeling | 75 |
| abstract_inverted_index.patterns | 227 |
| abstract_inverted_index.physical | 21 |
| abstract_inverted_index.previous | 48 |
| abstract_inverted_index.revealed | 268 |
| abstract_inverted_index.texture, | 1 |
| abstract_inverted_index.texture. | 65 |
| abstract_inverted_index.Elevation | 138 |
| abstract_inverted_index.attention | 79 |
| abstract_inverted_index.boosting, | 121 |
| abstract_inverted_index.collected | 163 |
| abstract_inverted_index.decreased | 83 |
| abstract_inverted_index.ecosystem | 42 |
| abstract_inverted_index.essential | 20 |
| abstract_inverted_index.exhibited | 220 |
| abstract_inverted_index.extremely | 129 |
| abstract_inverted_index.generated | 147 |
| abstract_inverted_index.modeling, | 37 |
| abstract_inverted_index.parameter | 32 |
| abstract_inverted_index.particles | 11 |
| abstract_inverted_index.predicted | 51 |
| abstract_inverted_index.recorded) | 219 |
| abstract_inverted_index.reference | 294 |
| abstract_inverted_index.satellite | 141 |
| abstract_inverted_index.(confusion | 210 |
| abstract_inverted_index.Currently, | 66 |
| abstract_inverted_index.algorithms | 117 |
| abstract_inverted_index.approaches | 67 |
| abstract_inverted_index.calculated | 63 |
| abstract_inverted_index.covariates | 134 |
| abstract_inverted_index.increasing | 78 |
| abstract_inverted_index.indirectly | 62 |
| abstract_inverted_index.normalized | 271 |
| abstract_inverted_index.predicting | 110 |
| abstract_inverted_index.prediction | 215, 231 |
| abstract_inverted_index.production | 39 |
| abstract_inverted_index.properties | 22 |
| abstract_inverted_index.randomized | 130 |
| abstract_inverted_index.recorded), | 235 |
| abstract_inverted_index.resolution | 151 |
| abstract_inverted_index.validation | 245 |
| abstract_inverted_index.assessment. | 43 |
| abstract_inverted_index.coefficient | 187 |
| abstract_inverted_index.conversion, | 87 |
| abstract_inverted_index.explanation | 263 |
| abstract_inverted_index.management, | 40 |
| abstract_inverted_index.performance | 105, 250 |
| abstract_inverted_index.prediction. | 259 |
| abstract_inverted_index.predictions | 177 |
| abstract_inverted_index.proportions | 5 |
| abstract_inverted_index.significant | 280 |
| abstract_inverted_index.uncertainty | 209 |
| abstract_inverted_index.Sentinel-1/2 | 140 |
| abstract_inverted_index.agricultural | 38 |
| abstract_inverted_index.distribution | 226 |
| abstract_inverted_index.environment. | 241 |
| abstract_inverted_index.hydrological | 36 |
| abstract_inverted_index.predictions, | 175 |
| abstract_inverted_index.distribution, | 248 |
| abstract_inverted_index.0.220–0.402. | 190 |
| abstract_inverted_index.20.57–44.19% | 183 |
| abstract_inverted_index.classification | 74, 144 |
| abstract_inverted_index.systematically | 92 |
| abstract_inverted_index.High-resolution | 25 |
| abstract_inverted_index.comprehensively | 102 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.89327362 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |