Machine Learning-Based Cooperative Spectrum Sensing in Dynamic Segmentation Enabled Cognitive Radio Vehicular Network Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/en14041169
A vehicle ad hoc network (VANET) is a solution for road safety, congestion management, and infotainment services. Integration of cognitive radio (CR), known as CR-VANET, is needed to solve the spectrum scarcity problems of VANET. Several research efforts have addressed the concerns of CR-VANET. However, more reliable, robust, and faster spectrum sensing is still a challenge. A novel segment-based CR-VANET (Seg-CR-VANET) architecture is therefore proposed in this paper. Roads are divided equally into segments, and they are sub-segmented based on the probability value. Individual vehicles or secondary users produce local sensing results by choosing an optimal spectrum sensing (SS) technique using a hybrid machine learning algorithm that includes fuzzy and naïve Bayes algorithms. We used dynamic threshold values for the sensing techniques. In this proposed cooperative SS, the segment spectrum agent (SSA) made the global decision using the tri-agent reinforcement learning (TA-RL) algorithm. Three environments (network, signal, and vehicle) are learned by this proposed algorithm to determine primary (licensed) users’ activities. The simulation results indicate that, compared to current works, the proposed Seg-CR-VANET produces better results in spectrum sensing.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/en14041169
- https://www.mdpi.com/1996-1073/14/4/1169/pdf?version=1614244664
- OA Status
- gold
- Cited By
- 32
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3132221436
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3132221436Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/en14041169Digital Object Identifier
- Title
-
Machine Learning-Based Cooperative Spectrum Sensing in Dynamic Segmentation Enabled Cognitive Radio Vehicular NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-02-22Full publication date if available
- Authors
-
Md. Asif Hossain, Rafidah Md Noor, Kok‐Lim Alvin Yau, Saaidal Razalli Azzuhri, Muhammad Reza Z’aba, Ismail Ahmedy, Mohammad Reza JabbarpourList of authors in order
- Landing page
-
https://doi.org/10.3390/en14041169Publisher landing page
- PDF URL
-
https://www.mdpi.com/1996-1073/14/4/1169/pdf?version=1614244664Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1996-1073/14/4/1169/pdf?version=1614244664Direct OA link when available
- Concepts
-
Cognitive radio, Vehicular ad hoc network, Computer science, Spectrum management, Reinforcement learning, Segmentation, Spectrum (functional analysis), Computer network, Fuzzy logic, Wireless ad hoc network, Real-time computing, Artificial intelligence, Wireless, Telecommunications, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
32Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 4, 2023: 10, 2022: 6, 2021: 5Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3132221436 |
|---|---|
| doi | https://doi.org/10.3390/en14041169 |
| ids.doi | https://doi.org/10.3390/en14041169 |
| ids.mag | 3132221436 |
| ids.openalex | https://openalex.org/W3132221436 |
| fwci | 4.1407939 |
| type | article |
| title | Machine Learning-Based Cooperative Spectrum Sensing in Dynamic Segmentation Enabled Cognitive Radio Vehicular Network |
| biblio.issue | 4 |
| biblio.volume | 14 |
| biblio.last_page | 1169 |
| biblio.first_page | 1169 |
| topics[0].id | https://openalex.org/T10579 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Cognitive Radio Networks and Spectrum Sensing |
| topics[1].id | https://openalex.org/T12146 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9848999977111816 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Power Line Communications and Noise |
| topics[2].id | https://openalex.org/T12879 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9824000000953674 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Distributed Sensor Networks and Detection Algorithms |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C149946192 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9070662260055542 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3235733 |
| concepts[0].display_name | Cognitive radio |
| concepts[1].id | https://openalex.org/C192448918 |
| concepts[1].level | 4 |
| concepts[1].score | 0.8195903301239014 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q682677 |
| concepts[1].display_name | Vehicular ad hoc network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7166885733604431 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C63029442 |
| concepts[3].level | 4 |
| concepts[3].score | 0.6349326372146606 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6504978 |
| concepts[3].display_name | Spectrum management |
| concepts[4].id | https://openalex.org/C97541855 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5482750535011292 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[4].display_name | Reinforcement learning |
| concepts[5].id | https://openalex.org/C89600930 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5144200921058655 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[5].display_name | Segmentation |
| concepts[6].id | https://openalex.org/C156778621 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4567173719406128 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1365748 |
| concepts[6].display_name | Spectrum (functional analysis) |
| concepts[7].id | https://openalex.org/C31258907 |
| concepts[7].level | 1 |
| concepts[7].score | 0.44642990827560425 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[7].display_name | Computer network |
| concepts[8].id | https://openalex.org/C58166 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4257248342037201 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[8].display_name | Fuzzy logic |
| concepts[9].id | https://openalex.org/C94523657 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4117293357849121 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q4085781 |
| concepts[9].display_name | Wireless ad hoc network |
| concepts[10].id | https://openalex.org/C79403827 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3665749132633209 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[10].display_name | Real-time computing |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.286061555147171 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C555944384 |
| concepts[12].level | 2 |
| concepts[12].score | 0.24637359380722046 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[12].display_name | Wireless |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.18481117486953735 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/cognitive-radio |
| keywords[0].score | 0.9070662260055542 |
| keywords[0].display_name | Cognitive radio |
| keywords[1].id | https://openalex.org/keywords/vehicular-ad-hoc-network |
| keywords[1].score | 0.8195903301239014 |
| keywords[1].display_name | Vehicular ad hoc network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7166885733604431 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/spectrum-management |
| keywords[3].score | 0.6349326372146606 |
| keywords[3].display_name | Spectrum management |
| keywords[4].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[4].score | 0.5482750535011292 |
| keywords[4].display_name | Reinforcement learning |
| keywords[5].id | https://openalex.org/keywords/segmentation |
| keywords[5].score | 0.5144200921058655 |
| keywords[5].display_name | Segmentation |
| keywords[6].id | https://openalex.org/keywords/spectrum |
| keywords[6].score | 0.4567173719406128 |
| keywords[6].display_name | Spectrum (functional analysis) |
| keywords[7].id | https://openalex.org/keywords/computer-network |
| keywords[7].score | 0.44642990827560425 |
| keywords[7].display_name | Computer network |
| keywords[8].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[8].score | 0.4257248342037201 |
| keywords[8].display_name | Fuzzy logic |
| keywords[9].id | https://openalex.org/keywords/wireless-ad-hoc-network |
| keywords[9].score | 0.4117293357849121 |
| keywords[9].display_name | Wireless ad hoc network |
| keywords[10].id | https://openalex.org/keywords/real-time-computing |
| keywords[10].score | 0.3665749132633209 |
| keywords[10].display_name | Real-time computing |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.286061555147171 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/wireless |
| keywords[12].score | 0.24637359380722046 |
| keywords[12].display_name | Wireless |
| keywords[13].id | https://openalex.org/keywords/telecommunications |
| keywords[13].score | 0.18481117486953735 |
| keywords[13].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.3390/en14041169 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S198098182 |
| locations[0].source.issn | 1996-1073 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1996-1073 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Energies |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1996-1073/14/4/1169/pdf?version=1614244664 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energies |
| locations[0].landing_page_url | https://doi.org/10.3390/en14041169 |
| locations[1].id | pmh:oai:RePEc:gam:jeners:v:14:y:2021:i:4:p:1169-:d:503797 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401271 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | RePEc: Research Papers in Economics |
| locations[1].source.host_organization | https://openalex.org/I77793887 |
| locations[1].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[1].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.mdpi.com/1996-1073/14/4/1169/ |
| locations[2].id | pmh:oai:doaj.org/article:f907c42d93c145c8b4925c21fbde715a |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Energies, Vol 14, Iss 4, p 1169 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/f907c42d93c145c8b4925c21fbde715a |
| locations[3].id | pmh:oai:mdpi.com:/1996-1073/14/4/1169/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Energies; Volume 14; Issue 4; Pages: 1169 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/en14041169 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5003296992 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8685-3113 |
| authorships[0].author.display_name | Md. Asif Hossain |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I33849332 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I33849332 |
| authorships[0].institutions[0].ror | https://ror.org/00rzspn62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I33849332 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | University of Malaya |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mohammad Asif Hossain |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[1].author.id | https://openalex.org/A5017116281 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6266-2390 |
| authorships[1].author.display_name | Rafidah Md Noor |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I33849332 |
| authorships[1].affiliations[0].raw_affiliation_string | Centre for Mobile Cloud Computing, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[1].institutions[0].id | https://openalex.org/I33849332 |
| authorships[1].institutions[0].ror | https://ror.org/00rzspn62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I33849332 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | University of Malaya |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rafidah Md Noor |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Centre for Mobile Cloud Computing, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[2].author.id | https://openalex.org/A5055349217 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3110-2782 |
| authorships[2].author.display_name | Kok‐Lim Alvin Yau |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I84339108 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Science and Technology, Sunway University, Selangor 47500, Malaysia |
| authorships[2].institutions[0].id | https://openalex.org/I84339108 |
| authorships[2].institutions[0].ror | https://ror.org/04mjt7f73 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I84339108 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | Sunway University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kok-Lim Alvin Yau |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Science and Technology, Sunway University, Selangor 47500, Malaysia |
| authorships[3].author.id | https://openalex.org/A5018629387 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8603-8840 |
| authorships[3].author.display_name | Saaidal Razalli Azzuhri |
| authorships[3].countries | MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I33849332 |
| authorships[3].affiliations[0].raw_affiliation_string | Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[3].institutions[0].id | https://openalex.org/I33849332 |
| authorships[3].institutions[0].ror | https://ror.org/00rzspn62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I33849332 |
| authorships[3].institutions[0].country_code | MY |
| authorships[3].institutions[0].display_name | University of Malaya |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Saaidal Razalli Azzuhri |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[4].author.id | https://openalex.org/A5023350004 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4908-7816 |
| authorships[4].author.display_name | Muhammad Reza Z’aba |
| authorships[4].countries | MY |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I33849332 |
| authorships[4].affiliations[0].raw_affiliation_string | Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[4].institutions[0].id | https://openalex.org/I33849332 |
| authorships[4].institutions[0].ror | https://ror.org/00rzspn62 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I33849332 |
| authorships[4].institutions[0].country_code | MY |
| authorships[4].institutions[0].display_name | University of Malaya |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Muhammad Reza Z’aba |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[5].author.id | https://openalex.org/A5022212729 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4324-8965 |
| authorships[5].author.display_name | Ismail Ahmedy |
| authorships[5].countries | MY |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I33849332 |
| authorships[5].affiliations[0].raw_affiliation_string | Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[5].institutions[0].id | https://openalex.org/I33849332 |
| authorships[5].institutions[0].ror | https://ror.org/00rzspn62 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I33849332 |
| authorships[5].institutions[0].country_code | MY |
| authorships[5].institutions[0].display_name | University of Malaya |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ismail Ahmedy |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[6].author.id | https://openalex.org/A5057606466 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2631-1168 |
| authorships[6].author.display_name | Mohammad Reza Jabbarpour |
| authorships[6].countries | IR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210163011 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Information and Communications Technology, Niroo Research Institute, Tehran 1468613113, Iran |
| authorships[6].institutions[0].id | https://openalex.org/I4210163011 |
| authorships[6].institutions[0].ror | https://ror.org/05xf50770 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210163011 |
| authorships[6].institutions[0].country_code | IR |
| authorships[6].institutions[0].display_name | Niroo Research Institute |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Mohammad Reza Jabbarpour |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Information and Communications Technology, Niroo Research Institute, Tehran 1468613113, Iran |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1996-1073/14/4/1169/pdf?version=1614244664 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-03-01T00:00:00 |
| display_name | Machine Learning-Based Cooperative Spectrum Sensing in Dynamic Segmentation Enabled Cognitive Radio Vehicular Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10579 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Cognitive Radio Networks and Spectrum Sensing |
| related_works | https://openalex.org/W2786459840, https://openalex.org/W2545213287, https://openalex.org/W2336181987, https://openalex.org/W2027636740, https://openalex.org/W2054719951, https://openalex.org/W4389477274, https://openalex.org/W3089664461, https://openalex.org/W1976405282, https://openalex.org/W2062688728, https://openalex.org/W2061231656 |
| cited_by_count | 32 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 5 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/en14041169 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S198098182 |
| best_oa_location.source.issn | 1996-1073 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1996-1073 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Energies |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1996-1073/14/4/1169/pdf?version=1614244664 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energies |
| best_oa_location.landing_page_url | https://doi.org/10.3390/en14041169 |
| primary_location.id | doi:10.3390/en14041169 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S198098182 |
| primary_location.source.issn | 1996-1073 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1996-1073 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Energies |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1996-1073/14/4/1169/pdf?version=1614244664 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energies |
| primary_location.landing_page_url | https://doi.org/10.3390/en14041169 |
| publication_date | 2021-02-22 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3019569977, https://openalex.org/W2903924498, https://openalex.org/W3035221823, https://openalex.org/W2986461217, https://openalex.org/W2907930484, https://openalex.org/W3126496211, https://openalex.org/W2908993293, https://openalex.org/W2966655977, https://openalex.org/W2955064662, https://openalex.org/W2910190480, https://openalex.org/W2150397642, https://openalex.org/W2790289586, https://openalex.org/W6762645648, https://openalex.org/W3010666302, https://openalex.org/W2996305946, https://openalex.org/W2914044115, https://openalex.org/W2789188956, https://openalex.org/W2951631011, https://openalex.org/W2883880120, https://openalex.org/W3028754899, https://openalex.org/W2785644752, https://openalex.org/W3085545602, https://openalex.org/W2945116375, https://openalex.org/W2000121515, https://openalex.org/W2249359021, https://openalex.org/W1983874169, https://openalex.org/W2916908970, https://openalex.org/W4214717370, https://openalex.org/W2908369203, https://openalex.org/W2803448068, https://openalex.org/W2946250637, https://openalex.org/W3103394902, https://openalex.org/W2121863487, https://openalex.org/W3099983193 |
| referenced_works_count | 34 |
| abstract_inverted_index.A | 0, 56 |
| abstract_inverted_index.a | 7, 54, 101 |
| abstract_inverted_index.In | 122 |
| abstract_inverted_index.We | 113 |
| abstract_inverted_index.ad | 2 |
| abstract_inverted_index.an | 94 |
| abstract_inverted_index.as | 23 |
| abstract_inverted_index.by | 92, 151 |
| abstract_inverted_index.in | 65, 176 |
| abstract_inverted_index.is | 6, 25, 52, 62 |
| abstract_inverted_index.of | 18, 33, 42 |
| abstract_inverted_index.on | 79 |
| abstract_inverted_index.or | 85 |
| abstract_inverted_index.to | 27, 155, 167 |
| abstract_inverted_index.SS, | 126 |
| abstract_inverted_index.The | 161 |
| abstract_inverted_index.and | 14, 48, 74, 109, 147 |
| abstract_inverted_index.are | 69, 76, 149 |
| abstract_inverted_index.for | 9, 118 |
| abstract_inverted_index.hoc | 3 |
| abstract_inverted_index.the | 29, 40, 80, 119, 127, 133, 137, 170 |
| abstract_inverted_index.(SS) | 98 |
| abstract_inverted_index.have | 38 |
| abstract_inverted_index.into | 72 |
| abstract_inverted_index.made | 132 |
| abstract_inverted_index.more | 45 |
| abstract_inverted_index.road | 10 |
| abstract_inverted_index.that | 106 |
| abstract_inverted_index.they | 75 |
| abstract_inverted_index.this | 66, 123, 152 |
| abstract_inverted_index.used | 114 |
| abstract_inverted_index.(CR), | 21 |
| abstract_inverted_index.(SSA) | 131 |
| abstract_inverted_index.Bayes | 111 |
| abstract_inverted_index.Roads | 68 |
| abstract_inverted_index.Three | 143 |
| abstract_inverted_index.agent | 130 |
| abstract_inverted_index.based | 78 |
| abstract_inverted_index.fuzzy | 108 |
| abstract_inverted_index.known | 22 |
| abstract_inverted_index.local | 89 |
| abstract_inverted_index.novel | 57 |
| abstract_inverted_index.radio | 20 |
| abstract_inverted_index.solve | 28 |
| abstract_inverted_index.still | 53 |
| abstract_inverted_index.that, | 165 |
| abstract_inverted_index.users | 87 |
| abstract_inverted_index.using | 100, 136 |
| abstract_inverted_index.VANET. | 34 |
| abstract_inverted_index.better | 174 |
| abstract_inverted_index.faster | 49 |
| abstract_inverted_index.global | 134 |
| abstract_inverted_index.hybrid | 102 |
| abstract_inverted_index.naïve | 110 |
| abstract_inverted_index.needed | 26 |
| abstract_inverted_index.paper. | 67 |
| abstract_inverted_index.value. | 82 |
| abstract_inverted_index.values | 117 |
| abstract_inverted_index.works, | 169 |
| abstract_inverted_index.(TA-RL) | 141 |
| abstract_inverted_index.(VANET) | 5 |
| abstract_inverted_index.Several | 35 |
| abstract_inverted_index.current | 168 |
| abstract_inverted_index.divided | 70 |
| abstract_inverted_index.dynamic | 115 |
| abstract_inverted_index.efforts | 37 |
| abstract_inverted_index.equally | 71 |
| abstract_inverted_index.learned | 150 |
| abstract_inverted_index.machine | 103 |
| abstract_inverted_index.network | 4 |
| abstract_inverted_index.optimal | 95 |
| abstract_inverted_index.primary | 157 |
| abstract_inverted_index.produce | 88 |
| abstract_inverted_index.results | 91, 163, 175 |
| abstract_inverted_index.robust, | 47 |
| abstract_inverted_index.safety, | 11 |
| abstract_inverted_index.segment | 128 |
| abstract_inverted_index.sensing | 51, 90, 97, 120 |
| abstract_inverted_index.signal, | 146 |
| abstract_inverted_index.vehicle | 1 |
| abstract_inverted_index.CR-VANET | 59 |
| abstract_inverted_index.However, | 44 |
| abstract_inverted_index.choosing | 93 |
| abstract_inverted_index.compared | 166 |
| abstract_inverted_index.concerns | 41 |
| abstract_inverted_index.decision | 135 |
| abstract_inverted_index.includes | 107 |
| abstract_inverted_index.indicate | 164 |
| abstract_inverted_index.learning | 104, 140 |
| abstract_inverted_index.problems | 32 |
| abstract_inverted_index.produces | 173 |
| abstract_inverted_index.proposed | 64, 124, 153, 171 |
| abstract_inverted_index.research | 36 |
| abstract_inverted_index.scarcity | 31 |
| abstract_inverted_index.sensing. | 178 |
| abstract_inverted_index.solution | 8 |
| abstract_inverted_index.spectrum | 30, 50, 96, 129, 177 |
| abstract_inverted_index.users’ | 159 |
| abstract_inverted_index.vehicle) | 148 |
| abstract_inverted_index.vehicles | 84 |
| abstract_inverted_index.(network, | 145 |
| abstract_inverted_index.CR-VANET, | 24 |
| abstract_inverted_index.CR-VANET. | 43 |
| abstract_inverted_index.addressed | 39 |
| abstract_inverted_index.algorithm | 105, 154 |
| abstract_inverted_index.cognitive | 19 |
| abstract_inverted_index.determine | 156 |
| abstract_inverted_index.reliable, | 46 |
| abstract_inverted_index.secondary | 86 |
| abstract_inverted_index.segments, | 73 |
| abstract_inverted_index.services. | 16 |
| abstract_inverted_index.technique | 99 |
| abstract_inverted_index.therefore | 63 |
| abstract_inverted_index.threshold | 116 |
| abstract_inverted_index.tri-agent | 138 |
| abstract_inverted_index.(licensed) | 158 |
| abstract_inverted_index.Individual | 83 |
| abstract_inverted_index.algorithm. | 142 |
| abstract_inverted_index.challenge. | 55 |
| abstract_inverted_index.congestion | 12 |
| abstract_inverted_index.simulation | 162 |
| abstract_inverted_index.Integration | 17 |
| abstract_inverted_index.activities. | 160 |
| abstract_inverted_index.algorithms. | 112 |
| abstract_inverted_index.cooperative | 125 |
| abstract_inverted_index.management, | 13 |
| abstract_inverted_index.probability | 81 |
| abstract_inverted_index.techniques. | 121 |
| abstract_inverted_index.Seg-CR-VANET | 172 |
| abstract_inverted_index.architecture | 61 |
| abstract_inverted_index.environments | 144 |
| abstract_inverted_index.infotainment | 15 |
| abstract_inverted_index.reinforcement | 139 |
| abstract_inverted_index.segment-based | 58 |
| abstract_inverted_index.sub-segmented | 77 |
| abstract_inverted_index.(Seg-CR-VANET) | 60 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5017116281, https://openalex.org/A5055349217 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I33849332, https://openalex.org/I84339108 |
| citation_normalized_percentile.value | 0.93618956 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |