Machine-Learning-Based Diabetes Mellitus Risk Prediction Using Multi-Layer Neural Network No-Prop Algorithm Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/diagnostics13040723
Over the past few decades, the prevalence of chronic illnesses in humans associated with high blood sugar has dramatically increased. Such a disease is referred to medically as diabetes mellitus. Diabetes mellitus can be categorized into three types, namely types 1, 2, and 3. When beta cells do not secrete enough insulin, type 1 diabetes develops. When beta cells create insulin, but the body is unable to use it, type 2 diabetes results. The last category is called gestational diabetes or type 3. This happens during the trimesters of pregnancy in women. Gestational diabetes, however, disappears automatically after childbirth or may continue to develop into type 2 diabetes. To improve their treatment strategies and facilitate healthcare, an automated information system to diagnose diabetes mellitus is required. In this context, this paper presents a novel system of classification of the three types of diabetes mellitus using a multi-layer neural network no-prop algorithm. The algorithm uses two major phases in the information system: the training phase and the testing phase. In each phase, the relevant attributes are identified using the attribute-selection process, and the neural network is trained individually in a multi-layer manner, starting with normal and type 1 diabetes, then normal and type 2 diabetes, and finally healthy and gestational diabetes. Classification is made more effective by the architecture of the multi-layer neural network. To provide experimental analysis and performances of diabetes diagnoses in terms of sensitivity, specificity, and accuracy, a confusion matrix is developed. The maximum specificity and sensitivity values of 0.95 and 0.97 are attained by this suggested multi-layer neural network. With an accuracy score of 97% for the categorization of diabetes mellitus, this proposed model outperforms other models, demonstrating that it is a workable and efficient approach.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/diagnostics13040723
- https://www.mdpi.com/2075-4418/13/4/723/pdf?version=1676531923
- OA Status
- gold
- Cited By
- 24
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4320918908
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4320918908Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/diagnostics13040723Digital Object Identifier
- Title
-
Machine-Learning-Based Diabetes Mellitus Risk Prediction Using Multi-Layer Neural Network No-Prop AlgorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-14Full publication date if available
- Authors
-
J. Jeba Sonia, J. Prassanna, Abdul Quadir, Senthilkumar Mohan, Arun Kumar Sivaraman, Kong Fah TeeList of authors in order
- Landing page
-
https://doi.org/10.3390/diagnostics13040723Publisher landing page
- PDF URL
-
https://www.mdpi.com/2075-4418/13/4/723/pdf?version=1676531923Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2075-4418/13/4/723/pdf?version=1676531923Direct OA link when available
- Concepts
-
Gestational diabetes, Diabetes mellitus, Context (archaeology), Type 2 diabetes, Artificial neural network, Medicine, Algorithm, Computer science, Artificial intelligence, Confusion matrix, Type 2 Diabetes Mellitus, Pregnancy, Disease, Machine learning, Internal medicine, Endocrinology, Gestation, Biology, Paleontology, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
24Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 10, 2023: 6Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4320918908 |
|---|---|
| doi | https://doi.org/10.3390/diagnostics13040723 |
| ids.doi | https://doi.org/10.3390/diagnostics13040723 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36832207 |
| ids.openalex | https://openalex.org/W4320918908 |
| fwci | 12.73963966 |
| type | article |
| title | Machine-Learning-Based Diabetes Mellitus Risk Prediction Using Multi-Layer Neural Network No-Prop Algorithm |
| biblio.issue | 4 |
| biblio.volume | 13 |
| biblio.last_page | 723 |
| biblio.first_page | 723 |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9574999809265137 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T10560 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9247999787330627 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2712 |
| topics[2].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[2].display_name | Diabetes Management and Research |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C2779434492 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7344687581062317 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q126691 |
| concepts[0].display_name | Gestational diabetes |
| concepts[1].id | https://openalex.org/C555293320 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7250963449478149 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12206 |
| concepts[1].display_name | Diabetes mellitus |
| concepts[2].id | https://openalex.org/C2779343474 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6033582091331482 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[2].display_name | Context (archaeology) |
| concepts[3].id | https://openalex.org/C2777180221 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6026666760444641 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3025883 |
| concepts[3].display_name | Type 2 diabetes |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5975952744483948 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5794147849082947 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4678799510002136 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.46360599994659424 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4548795819282532 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C138602881 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4352649450302124 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2709591 |
| concepts[9].display_name | Confusion matrix |
| concepts[10].id | https://openalex.org/C2910068830 |
| concepts[10].level | 3 |
| concepts[10].score | 0.43003910779953003 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3025883 |
| concepts[10].display_name | Type 2 Diabetes Mellitus |
| concepts[11].id | https://openalex.org/C2779234561 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4227457344532013 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11995 |
| concepts[11].display_name | Pregnancy |
| concepts[12].id | https://openalex.org/C2779134260 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4222675561904907 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[12].display_name | Disease |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3843385875225067 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C126322002 |
| concepts[14].level | 1 |
| concepts[14].score | 0.30295872688293457 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[14].display_name | Internal medicine |
| concepts[15].id | https://openalex.org/C134018914 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2632352411746979 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[15].display_name | Endocrinology |
| concepts[16].id | https://openalex.org/C46973012 |
| concepts[16].level | 3 |
| concepts[16].score | 0.16351211071014404 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q28627 |
| concepts[16].display_name | Gestation |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C151730666 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[18].display_name | Paleontology |
| concepts[19].id | https://openalex.org/C54355233 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[19].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/gestational-diabetes |
| keywords[0].score | 0.7344687581062317 |
| keywords[0].display_name | Gestational diabetes |
| keywords[1].id | https://openalex.org/keywords/diabetes-mellitus |
| keywords[1].score | 0.7250963449478149 |
| keywords[1].display_name | Diabetes mellitus |
| keywords[2].id | https://openalex.org/keywords/context |
| keywords[2].score | 0.6033582091331482 |
| keywords[2].display_name | Context (archaeology) |
| keywords[3].id | https://openalex.org/keywords/type-2-diabetes |
| keywords[3].score | 0.6026666760444641 |
| keywords[3].display_name | Type 2 diabetes |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.5975952744483948 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.5794147849082947 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.4678799510002136 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.46360599994659424 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.4548795819282532 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/confusion-matrix |
| keywords[9].score | 0.4352649450302124 |
| keywords[9].display_name | Confusion matrix |
| keywords[10].id | https://openalex.org/keywords/type-2-diabetes-mellitus |
| keywords[10].score | 0.43003910779953003 |
| keywords[10].display_name | Type 2 Diabetes Mellitus |
| keywords[11].id | https://openalex.org/keywords/pregnancy |
| keywords[11].score | 0.4227457344532013 |
| keywords[11].display_name | Pregnancy |
| keywords[12].id | https://openalex.org/keywords/disease |
| keywords[12].score | 0.4222675561904907 |
| keywords[12].display_name | Disease |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.3843385875225067 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/internal-medicine |
| keywords[14].score | 0.30295872688293457 |
| keywords[14].display_name | Internal medicine |
| keywords[15].id | https://openalex.org/keywords/endocrinology |
| keywords[15].score | 0.2632352411746979 |
| keywords[15].display_name | Endocrinology |
| keywords[16].id | https://openalex.org/keywords/gestation |
| keywords[16].score | 0.16351211071014404 |
| keywords[16].display_name | Gestation |
| language | en |
| locations[0].id | doi:10.3390/diagnostics13040723 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172076 |
| locations[0].source.issn | 2075-4418 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2075-4418 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Diagnostics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2075-4418/13/4/723/pdf?version=1676531923 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Diagnostics |
| locations[0].landing_page_url | https://doi.org/10.3390/diagnostics13040723 |
| locations[1].id | pmid:36832207 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Diagnostics (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36832207 |
| locations[2].id | pmh:oai:doaj.org/article:37e68bd45fd843f78cd78fb277c260f1 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Diagnostics, Vol 13, Iss 4, p 723 (2023) |
| locations[2].landing_page_url | https://doaj.org/article/37e68bd45fd843f78cd78fb277c260f1 |
| locations[3].id | pmh:oai:mdpi.com:/2075-4418/13/4/723/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Diagnostics |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/diagnostics13040723 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9955149 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Diagnostics (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9955149 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5044072100 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | J. Jeba Sonia |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145286018 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Data Science and Business Systems, School of Computing, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, Chennai 603203, India |
| authorships[0].institutions[0].id | https://openalex.org/I145286018 |
| authorships[0].institutions[0].ror | https://ror.org/050113w36 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145286018 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | SRM Institute of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | J. Jeba Sonia |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Data Science and Business Systems, School of Computing, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, Chennai 603203, India |
| authorships[1].author.id | https://openalex.org/A5084784486 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | J. Prassanna |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India |
| authorships[1].institutions[0].id | https://openalex.org/I876193797 |
| authorships[1].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Prassanna Jayachandran |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India |
| authorships[2].author.id | https://openalex.org/A5057503238 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0569-9960 |
| authorships[2].author.display_name | Abdul Quadir |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India |
| authorships[2].institutions[0].id | https://openalex.org/I876193797 |
| authorships[2].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Abdul Quadir Md |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India |
| authorships[3].author.id | https://openalex.org/A5013635040 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8114-3147 |
| authorships[3].author.display_name | Senthilkumar Mohan |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India |
| authorships[3].institutions[0].id | https://openalex.org/I876193797 |
| authorships[3].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Senthilkumar Mohan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India |
| authorships[4].author.id | https://openalex.org/A5021370867 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0514-484X |
| authorships[4].author.display_name | Arun Kumar Sivaraman |
| authorships[4].affiliations[0].raw_affiliation_string | Centre for Data Research, Esckimo Robotics Inc., Chennai 600002, India |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Arun Kumar Sivaraman |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Centre for Data Research, Esckimo Robotics Inc., Chennai 600002, India |
| authorships[5].author.id | https://openalex.org/A5037648726 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3202-873X |
| authorships[5].author.display_name | Kong Fah Tee |
| authorships[5].countries | MY |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I12649496 |
| authorships[5].affiliations[0].raw_affiliation_string | Faculty of Engineering and Quantity Surveying, INTI International University, Nilai 71800, Malaysia |
| authorships[5].institutions[0].id | https://openalex.org/I12649496 |
| authorships[5].institutions[0].ror | https://ror.org/03fj82m46 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I12649496 |
| authorships[5].institutions[0].country_code | MY |
| authorships[5].institutions[0].display_name | INTI International University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Kong Fah Tee |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Faculty of Engineering and Quantity Surveying, INTI International University, Nilai 71800, Malaysia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2075-4418/13/4/723/pdf?version=1676531923 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine-Learning-Based Diabetes Mellitus Risk Prediction Using Multi-Layer Neural Network No-Prop Algorithm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| related_works | https://openalex.org/W4321169775, https://openalex.org/W2186292959, https://openalex.org/W2339824791, https://openalex.org/W4389009687, https://openalex.org/W4317738609, https://openalex.org/W2803227732, https://openalex.org/W2387894239, https://openalex.org/W4286501288, https://openalex.org/W3213312326, https://openalex.org/W2069009271 |
| cited_by_count | 24 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/diagnostics13040723 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172076 |
| best_oa_location.source.issn | 2075-4418 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2075-4418 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Diagnostics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2075-4418/13/4/723/pdf?version=1676531923 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Diagnostics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/diagnostics13040723 |
| primary_location.id | doi:10.3390/diagnostics13040723 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172076 |
| primary_location.source.issn | 2075-4418 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2075-4418 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Diagnostics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2075-4418/13/4/723/pdf?version=1676531923 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Diagnostics |
| primary_location.landing_page_url | https://doi.org/10.3390/diagnostics13040723 |
| publication_date | 2023-02-14 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2985452234, https://openalex.org/W2461522970, https://openalex.org/W3008233702, https://openalex.org/W2063046703, https://openalex.org/W3020776760, https://openalex.org/W3023265004, https://openalex.org/W1570834090, https://openalex.org/W3001481174, https://openalex.org/W1989149221, https://openalex.org/W2908604688, https://openalex.org/W6635626815, https://openalex.org/W2032300448, https://openalex.org/W2953421802, https://openalex.org/W2900329012, https://openalex.org/W4205307972, https://openalex.org/W2569214105, https://openalex.org/W901067443, https://openalex.org/W6810860621, https://openalex.org/W2083780116, https://openalex.org/W6786675878, https://openalex.org/W3130449168, https://openalex.org/W3112380905, https://openalex.org/W4207000638, https://openalex.org/W1594005194, https://openalex.org/W3206642062, https://openalex.org/W4225725880 |
| referenced_works_count | 26 |
| abstract_inverted_index.1 | 53, 196 |
| abstract_inverted_index.2 | 70, 106, 202 |
| abstract_inverted_index.a | 21, 132, 145, 188, 239, 284 |
| abstract_inverted_index.1, | 40 |
| abstract_inverted_index.2, | 41 |
| abstract_inverted_index.3. | 43, 82 |
| abstract_inverted_index.In | 126, 168 |
| abstract_inverted_index.To | 108, 223 |
| abstract_inverted_index.an | 116, 263 |
| abstract_inverted_index.as | 27 |
| abstract_inverted_index.be | 33 |
| abstract_inverted_index.by | 215, 256 |
| abstract_inverted_index.do | 47 |
| abstract_inverted_index.in | 10, 90, 157, 187, 232 |
| abstract_inverted_index.is | 23, 64, 76, 124, 184, 211, 242, 283 |
| abstract_inverted_index.it | 282 |
| abstract_inverted_index.of | 7, 88, 135, 137, 141, 218, 229, 234, 250, 266, 271 |
| abstract_inverted_index.or | 80, 99 |
| abstract_inverted_index.to | 25, 66, 102, 120 |
| abstract_inverted_index.97% | 267 |
| abstract_inverted_index.The | 73, 151, 244 |
| abstract_inverted_index.and | 42, 113, 164, 180, 194, 200, 204, 207, 227, 237, 247, 252, 286 |
| abstract_inverted_index.are | 174, 254 |
| abstract_inverted_index.but | 61 |
| abstract_inverted_index.can | 32 |
| abstract_inverted_index.few | 3 |
| abstract_inverted_index.for | 268 |
| abstract_inverted_index.has | 17 |
| abstract_inverted_index.it, | 68 |
| abstract_inverted_index.may | 100 |
| abstract_inverted_index.not | 48 |
| abstract_inverted_index.the | 1, 5, 62, 86, 138, 158, 161, 165, 171, 177, 181, 216, 219, 269 |
| abstract_inverted_index.two | 154 |
| abstract_inverted_index.use | 67 |
| abstract_inverted_index.0.95 | 251 |
| abstract_inverted_index.0.97 | 253 |
| abstract_inverted_index.Over | 0 |
| abstract_inverted_index.Such | 20 |
| abstract_inverted_index.This | 83 |
| abstract_inverted_index.When | 44, 56 |
| abstract_inverted_index.With | 262 |
| abstract_inverted_index.beta | 45, 57 |
| abstract_inverted_index.body | 63 |
| abstract_inverted_index.each | 169 |
| abstract_inverted_index.high | 14 |
| abstract_inverted_index.into | 35, 104 |
| abstract_inverted_index.last | 74 |
| abstract_inverted_index.made | 212 |
| abstract_inverted_index.more | 213 |
| abstract_inverted_index.past | 2 |
| abstract_inverted_index.that | 281 |
| abstract_inverted_index.then | 198 |
| abstract_inverted_index.this | 127, 129, 257, 274 |
| abstract_inverted_index.type | 52, 69, 81, 105, 195, 201 |
| abstract_inverted_index.uses | 153 |
| abstract_inverted_index.with | 13, 192 |
| abstract_inverted_index.after | 97 |
| abstract_inverted_index.blood | 15 |
| abstract_inverted_index.cells | 46, 58 |
| abstract_inverted_index.major | 155 |
| abstract_inverted_index.model | 276 |
| abstract_inverted_index.novel | 133 |
| abstract_inverted_index.other | 278 |
| abstract_inverted_index.paper | 130 |
| abstract_inverted_index.phase | 163 |
| abstract_inverted_index.score | 265 |
| abstract_inverted_index.sugar | 16 |
| abstract_inverted_index.terms | 233 |
| abstract_inverted_index.their | 110 |
| abstract_inverted_index.three | 36, 139 |
| abstract_inverted_index.types | 39, 140 |
| abstract_inverted_index.using | 144, 176 |
| abstract_inverted_index.called | 77 |
| abstract_inverted_index.create | 59 |
| abstract_inverted_index.during | 85 |
| abstract_inverted_index.enough | 50 |
| abstract_inverted_index.humans | 11 |
| abstract_inverted_index.matrix | 241 |
| abstract_inverted_index.namely | 38 |
| abstract_inverted_index.neural | 147, 182, 221, 260 |
| abstract_inverted_index.normal | 193, 199 |
| abstract_inverted_index.phase, | 170 |
| abstract_inverted_index.phase. | 167 |
| abstract_inverted_index.phases | 156 |
| abstract_inverted_index.system | 119, 134 |
| abstract_inverted_index.types, | 37 |
| abstract_inverted_index.unable | 65 |
| abstract_inverted_index.values | 249 |
| abstract_inverted_index.women. | 91 |
| abstract_inverted_index.chronic | 8 |
| abstract_inverted_index.develop | 103 |
| abstract_inverted_index.disease | 22 |
| abstract_inverted_index.finally | 205 |
| abstract_inverted_index.happens | 84 |
| abstract_inverted_index.healthy | 206 |
| abstract_inverted_index.improve | 109 |
| abstract_inverted_index.manner, | 190 |
| abstract_inverted_index.maximum | 245 |
| abstract_inverted_index.models, | 279 |
| abstract_inverted_index.network | 148, 183 |
| abstract_inverted_index.no-prop | 149 |
| abstract_inverted_index.provide | 224 |
| abstract_inverted_index.secrete | 49 |
| abstract_inverted_index.system: | 160 |
| abstract_inverted_index.testing | 166 |
| abstract_inverted_index.trained | 185 |
| abstract_inverted_index.Diabetes | 30 |
| abstract_inverted_index.accuracy | 264 |
| abstract_inverted_index.analysis | 226 |
| abstract_inverted_index.attained | 255 |
| abstract_inverted_index.category | 75 |
| abstract_inverted_index.context, | 128 |
| abstract_inverted_index.continue | 101 |
| abstract_inverted_index.decades, | 4 |
| abstract_inverted_index.diabetes | 28, 54, 71, 79, 122, 142, 230, 272 |
| abstract_inverted_index.diagnose | 121 |
| abstract_inverted_index.however, | 94 |
| abstract_inverted_index.insulin, | 51, 60 |
| abstract_inverted_index.mellitus | 31, 123, 143 |
| abstract_inverted_index.network. | 222, 261 |
| abstract_inverted_index.presents | 131 |
| abstract_inverted_index.process, | 179 |
| abstract_inverted_index.proposed | 275 |
| abstract_inverted_index.referred | 24 |
| abstract_inverted_index.relevant | 172 |
| abstract_inverted_index.results. | 72 |
| abstract_inverted_index.starting | 191 |
| abstract_inverted_index.training | 162 |
| abstract_inverted_index.workable | 285 |
| abstract_inverted_index.accuracy, | 238 |
| abstract_inverted_index.algorithm | 152 |
| abstract_inverted_index.approach. | 288 |
| abstract_inverted_index.automated | 117 |
| abstract_inverted_index.confusion | 240 |
| abstract_inverted_index.develops. | 55 |
| abstract_inverted_index.diabetes, | 93, 197, 203 |
| abstract_inverted_index.diabetes. | 107, 209 |
| abstract_inverted_index.diagnoses | 231 |
| abstract_inverted_index.effective | 214 |
| abstract_inverted_index.efficient | 287 |
| abstract_inverted_index.illnesses | 9 |
| abstract_inverted_index.medically | 26 |
| abstract_inverted_index.mellitus, | 273 |
| abstract_inverted_index.mellitus. | 29 |
| abstract_inverted_index.pregnancy | 89 |
| abstract_inverted_index.required. | 125 |
| abstract_inverted_index.suggested | 258 |
| abstract_inverted_index.treatment | 111 |
| abstract_inverted_index.algorithm. | 150 |
| abstract_inverted_index.associated | 12 |
| abstract_inverted_index.attributes | 173 |
| abstract_inverted_index.childbirth | 98 |
| abstract_inverted_index.developed. | 243 |
| abstract_inverted_index.disappears | 95 |
| abstract_inverted_index.facilitate | 114 |
| abstract_inverted_index.identified | 175 |
| abstract_inverted_index.increased. | 19 |
| abstract_inverted_index.prevalence | 6 |
| abstract_inverted_index.strategies | 112 |
| abstract_inverted_index.trimesters | 87 |
| abstract_inverted_index.Gestational | 92 |
| abstract_inverted_index.categorized | 34 |
| abstract_inverted_index.gestational | 78, 208 |
| abstract_inverted_index.healthcare, | 115 |
| abstract_inverted_index.information | 118, 159 |
| abstract_inverted_index.multi-layer | 146, 189, 220, 259 |
| abstract_inverted_index.outperforms | 277 |
| abstract_inverted_index.sensitivity | 248 |
| abstract_inverted_index.specificity | 246 |
| abstract_inverted_index.architecture | 217 |
| abstract_inverted_index.dramatically | 18 |
| abstract_inverted_index.experimental | 225 |
| abstract_inverted_index.individually | 186 |
| abstract_inverted_index.performances | 228 |
| abstract_inverted_index.sensitivity, | 235 |
| abstract_inverted_index.specificity, | 236 |
| abstract_inverted_index.automatically | 96 |
| abstract_inverted_index.demonstrating | 280 |
| abstract_inverted_index.Classification | 210 |
| abstract_inverted_index.categorization | 270 |
| abstract_inverted_index.classification | 136 |
| abstract_inverted_index.attribute-selection | 178 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5084784486 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I876193797 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8299999833106995 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.97884165 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |