Machine Learning-Based Network Anomaly Detection: Design, Implementation, and Evaluation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/ai5040143
Background: In the last decade, numerous methods have been proposed to define and detect outliers, particularly in complex environments like networks, where anomalies significantly deviate from normal patterns. Although defining a clear standard is challenging, anomaly detection systems have become essential for network administrators to efficiently identify and resolve irregularities. Methods: This study develops and evaluates a machine learning-based system for network anomaly detection, focusing on point anomalies within network traffic. It employs both unsupervised and supervised learning techniques, including change point detection, clustering, and classification models, to identify anomalies. SHAP values are utilized to enhance model interpretability. Results: Unsupervised models effectively captured temporal patterns, while supervised models, particularly Random Forest (94.3%), demonstrated high accuracy in classifying anomalies, closely approximating the actual anomaly rate. Conclusions: Experimental results indicate that the system can accurately predict network anomalies in advance. Congestion and packet loss were identified as key factors in anomaly detection. This study demonstrates the potential for real-world deployment of the anomaly detection system to validate its scalability.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/ai5040143
- https://www.mdpi.com/2673-2688/5/4/143/pdf?version=1734433888
- OA Status
- gold
- Cited By
- 11
- References
- 66
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405501328
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405501328Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/ai5040143Digital Object Identifier
- Title
-
Machine Learning-Based Network Anomaly Detection: Design, Implementation, and EvaluationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-17Full publication date if available
- Authors
-
Pilar Schummer, Alberto del Río, Javier Serrano, David Jiménez, Guillermo Sánchez, A. LlorenteList of authors in order
- Landing page
-
https://doi.org/10.3390/ai5040143Publisher landing page
- PDF URL
-
https://www.mdpi.com/2673-2688/5/4/143/pdf?version=1734433888Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2673-2688/5/4/143/pdf?version=1734433888Direct OA link when available
- Concepts
-
Anomaly detection, Interpretability, Computer science, Artificial intelligence, Anomaly (physics), Cluster analysis, Machine learning, Outlier, Data mining, Scalability, Unsupervised learning, Software deployment, Condensed matter physics, Operating system, Physics, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11Per-year citation counts (last 5 years)
- References (count)
-
66Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405501328 |
|---|---|
| doi | https://doi.org/10.3390/ai5040143 |
| ids.doi | https://doi.org/10.3390/ai5040143 |
| ids.openalex | https://openalex.org/W4405501328 |
| fwci | 7.02656404 |
| type | article |
| title | Machine Learning-Based Network Anomaly Detection: Design, Implementation, and Evaluation |
| awards[0].id | https://openalex.org/G6754844401 |
| awards[0].funder_id | https://openalex.org/F4320320300 |
| awards[0].display_name | |
| awards[0].funder_award_id | 101168182 |
| awards[0].funder_display_name | European Commission |
| biblio.issue | 4 |
| biblio.volume | 5 |
| biblio.last_page | 2983 |
| biblio.first_page | 2967 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9998999834060669 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T11598 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9925000071525574 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Internet Traffic Analysis and Secure E-voting |
| funders[0].id | https://openalex.org/F4320320300 |
| funders[0].ror | https://ror.org/00k4n6c32 |
| funders[0].display_name | European Commission |
| is_xpac | False |
| apc_list.value | 1000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1082 |
| apc_paid.value | 1000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1082 |
| concepts[0].id | https://openalex.org/C739882 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8847923874855042 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[0].display_name | Anomaly detection |
| concepts[1].id | https://openalex.org/C2781067378 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8160364627838135 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[1].display_name | Interpretability |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7518587112426758 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5691525936126709 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C12997251 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5665092468261719 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q567560 |
| concepts[4].display_name | Anomaly (physics) |
| concepts[5].id | https://openalex.org/C73555534 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5540779232978821 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[5].display_name | Cluster analysis |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5491410493850708 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C79337645 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5477308034896851 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[7].display_name | Outlier |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.49907946586608887 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C48044578 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4807896018028259 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[9].display_name | Scalability |
| concepts[10].id | https://openalex.org/C8038995 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4599674344062805 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1152135 |
| concepts[10].display_name | Unsupervised learning |
| concepts[11].id | https://openalex.org/C105339364 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4100494384765625 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2297740 |
| concepts[11].display_name | Software deployment |
| concepts[12].id | https://openalex.org/C26873012 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[12].display_name | Condensed matter physics |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C77088390 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[15].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/anomaly-detection |
| keywords[0].score | 0.8847923874855042 |
| keywords[0].display_name | Anomaly detection |
| keywords[1].id | https://openalex.org/keywords/interpretability |
| keywords[1].score | 0.8160364627838135 |
| keywords[1].display_name | Interpretability |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7518587112426758 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5691525936126709 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/anomaly |
| keywords[4].score | 0.5665092468261719 |
| keywords[4].display_name | Anomaly (physics) |
| keywords[5].id | https://openalex.org/keywords/cluster-analysis |
| keywords[5].score | 0.5540779232978821 |
| keywords[5].display_name | Cluster analysis |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5491410493850708 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/outlier |
| keywords[7].score | 0.5477308034896851 |
| keywords[7].display_name | Outlier |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.49907946586608887 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/scalability |
| keywords[9].score | 0.4807896018028259 |
| keywords[9].display_name | Scalability |
| keywords[10].id | https://openalex.org/keywords/unsupervised-learning |
| keywords[10].score | 0.4599674344062805 |
| keywords[10].display_name | Unsupervised learning |
| keywords[11].id | https://openalex.org/keywords/software-deployment |
| keywords[11].score | 0.4100494384765625 |
| keywords[11].display_name | Software deployment |
| language | en |
| locations[0].id | doi:10.3390/ai5040143 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210200511 |
| locations[0].source.issn | 2673-2688 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2673-2688 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | AI |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2673-2688/5/4/143/pdf?version=1734433888 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AI |
| locations[0].landing_page_url | https://doi.org/10.3390/ai5040143 |
| locations[1].id | pmh:oai:doaj.org/article:4b3aca8672dc449b8d2d7362fbf8803d |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | AI, Vol 5, Iss 4, Pp 2967-2983 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/4b3aca8672dc449b8d2d7362fbf8803d |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5115517340 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Pilar Schummer |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I88060688 |
| authorships[0].affiliations[0].raw_affiliation_string | Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid, 28040 Madrid, Spain |
| authorships[0].institutions[0].id | https://openalex.org/I88060688 |
| authorships[0].institutions[0].ror | https://ror.org/03n6nwv02 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I88060688 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Universidad Politécnica de Madrid |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pilar Schummer |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid, 28040 Madrid, Spain |
| authorships[1].author.id | https://openalex.org/A5058815085 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6832-4381 |
| authorships[1].author.display_name | Alberto del Río |
| authorships[1].countries | ES |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I88060688 |
| authorships[1].affiliations[0].raw_affiliation_string | Signals, Systems and Radiocommunications Department, Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid, 28040 Madrid, Spain |
| authorships[1].institutions[0].id | https://openalex.org/I88060688 |
| authorships[1].institutions[0].ror | https://ror.org/03n6nwv02 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I88060688 |
| authorships[1].institutions[0].country_code | ES |
| authorships[1].institutions[0].display_name | Universidad Politécnica de Madrid |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alberto del Rio |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Signals, Systems and Radiocommunications Department, Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid, 28040 Madrid, Spain |
| authorships[2].author.id | https://openalex.org/A5022183159 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2111-187X |
| authorships[2].author.display_name | Javier Serrano |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I88060688 |
| authorships[2].affiliations[0].raw_affiliation_string | Informatic Systems Department, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos (ETSISI), Universidad Politécnica de Madrid, 28031 Madrid, Spain |
| authorships[2].institutions[0].id | https://openalex.org/I88060688 |
| authorships[2].institutions[0].ror | https://ror.org/03n6nwv02 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I88060688 |
| authorships[2].institutions[0].country_code | ES |
| authorships[2].institutions[0].display_name | Universidad Politécnica de Madrid |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Javier Serrano |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Informatic Systems Department, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos (ETSISI), Universidad Politécnica de Madrid, 28031 Madrid, Spain |
| authorships[3].author.id | https://openalex.org/A5015883220 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7382-4276 |
| authorships[3].author.display_name | David Jiménez |
| authorships[3].countries | ES |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I88060688 |
| authorships[3].affiliations[0].raw_affiliation_string | Physical Electronics, Electrical Engineering and Applied Physics Department, Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid, 28040 Madrid, Spain |
| authorships[3].institutions[0].id | https://openalex.org/I88060688 |
| authorships[3].institutions[0].ror | https://ror.org/03n6nwv02 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I88060688 |
| authorships[3].institutions[0].country_code | ES |
| authorships[3].institutions[0].display_name | Universidad Politécnica de Madrid |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | David Jimenez |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Physical Electronics, Electrical Engineering and Applied Physics Department, Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid, 28040 Madrid, Spain |
| authorships[4].author.id | https://openalex.org/A5011718825 |
| authorships[4].author.orcid | https://orcid.org/0009-0007-0927-6344 |
| authorships[4].author.display_name | Guillermo Sánchez |
| authorships[4].countries | ES |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210134591 |
| authorships[4].affiliations[0].raw_affiliation_string | Global CTIO Unit, Telefónica Innovación Digital, 28050 Madrid, Spain |
| authorships[4].institutions[0].id | https://openalex.org/I4210134591 |
| authorships[4].institutions[0].ror | https://ror.org/03qgzzb04 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210097190, https://openalex.org/I4210134591 |
| authorships[4].institutions[0].country_code | ES |
| authorships[4].institutions[0].display_name | Telefonica Research and Development |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Guillermo Sánchez |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Global CTIO Unit, Telefónica Innovación Digital, 28050 Madrid, Spain |
| authorships[5].author.id | https://openalex.org/A5074429735 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8737-2402 |
| authorships[5].author.display_name | A. Llorente |
| authorships[5].countries | ES |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I88060688 |
| authorships[5].affiliations[0].raw_affiliation_string | Signals, Systems and Radiocommunications Department, Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid, 28040 Madrid, Spain |
| authorships[5].institutions[0].id | https://openalex.org/I88060688 |
| authorships[5].institutions[0].ror | https://ror.org/03n6nwv02 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I88060688 |
| authorships[5].institutions[0].country_code | ES |
| authorships[5].institutions[0].display_name | Universidad Politécnica de Madrid |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Álvaro Llorente |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Signals, Systems and Radiocommunications Department, Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid, 28040 Madrid, Spain |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2673-2688/5/4/143/pdf?version=1734433888 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine Learning-Based Network Anomaly Detection: Design, Implementation, and Evaluation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2499612753, https://openalex.org/W3111802945, https://openalex.org/W2806741695, https://openalex.org/W2946096271, https://openalex.org/W2295423552, https://openalex.org/W1598471830, https://openalex.org/W3107369729, https://openalex.org/W4290647774, https://openalex.org/W3189286258, https://openalex.org/W3207797160 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/ai5040143 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210200511 |
| best_oa_location.source.issn | 2673-2688 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2673-2688 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | AI |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2673-2688/5/4/143/pdf?version=1734433888 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AI |
| best_oa_location.landing_page_url | https://doi.org/10.3390/ai5040143 |
| primary_location.id | doi:10.3390/ai5040143 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210200511 |
| primary_location.source.issn | 2673-2688 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2673-2688 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | AI |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2673-2688/5/4/143/pdf?version=1734433888 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AI |
| primary_location.landing_page_url | https://doi.org/10.3390/ai5040143 |
| publication_date | 2024-12-17 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2091120919, https://openalex.org/W2792824988, https://openalex.org/W2810550035, https://openalex.org/W2947096836, https://openalex.org/W4285103550, https://openalex.org/W4285013180, https://openalex.org/W4379386224, https://openalex.org/W2804522644, https://openalex.org/W3164768164, https://openalex.org/W4307907319, https://openalex.org/W2278186031, https://openalex.org/W3147861868, https://openalex.org/W3203878905, https://openalex.org/W4378087497, https://openalex.org/W4256141317, https://openalex.org/W3081229243, https://openalex.org/W2180566385, https://openalex.org/W2964032056, https://openalex.org/W3034122135, https://openalex.org/W2049058890, https://openalex.org/W187043655, https://openalex.org/W2986537531, https://openalex.org/W4239510810, https://openalex.org/W3213692590, https://openalex.org/W3040266635, https://openalex.org/W2122646361, https://openalex.org/W4205935407, https://openalex.org/W4254182148, https://openalex.org/W2621614835, https://openalex.org/W2399941526, https://openalex.org/W4285187747, https://openalex.org/W2901530243, https://openalex.org/W2030553727, https://openalex.org/W2768800090, https://openalex.org/W3027374119, https://openalex.org/W3089610451, https://openalex.org/W2803446235, https://openalex.org/W2765811365, https://openalex.org/W3113720674, https://openalex.org/W2006740091, https://openalex.org/W4285274733, https://openalex.org/W3180664244, https://openalex.org/W4291002321, https://openalex.org/W3196833029, https://openalex.org/W4394828200, https://openalex.org/W6781770815, https://openalex.org/W2783384500, https://openalex.org/W1578389446, https://openalex.org/W4315798510, https://openalex.org/W3038154406, https://openalex.org/W4385994346, https://openalex.org/W4375798894, https://openalex.org/W3153226991, https://openalex.org/W4386025658, https://openalex.org/W2919782006, https://openalex.org/W2294723619, https://openalex.org/W4238438965, https://openalex.org/W4206741375, https://openalex.org/W3008450544, https://openalex.org/W2559568760, https://openalex.org/W3176742384, https://openalex.org/W4281766094, https://openalex.org/W2964304846, https://openalex.org/W3151900735, https://openalex.org/W3047381018, https://openalex.org/W3135550350 |
| referenced_works_count | 66 |
| abstract_inverted_index.a | 30, 56 |
| abstract_inverted_index.In | 1 |
| abstract_inverted_index.It | 71 |
| abstract_inverted_index.as | 144 |
| abstract_inverted_index.in | 16, 115, 136, 147 |
| abstract_inverted_index.is | 33 |
| abstract_inverted_index.of | 158 |
| abstract_inverted_index.on | 65 |
| abstract_inverted_index.to | 10, 44, 87, 94, 163 |
| abstract_inverted_index.and | 12, 47, 54, 75, 84, 139 |
| abstract_inverted_index.are | 92 |
| abstract_inverted_index.can | 131 |
| abstract_inverted_index.for | 41, 60, 155 |
| abstract_inverted_index.its | 165 |
| abstract_inverted_index.key | 145 |
| abstract_inverted_index.the | 2, 120, 129, 153, 159 |
| abstract_inverted_index.SHAP | 90 |
| abstract_inverted_index.This | 51, 150 |
| abstract_inverted_index.been | 8 |
| abstract_inverted_index.both | 73 |
| abstract_inverted_index.from | 25 |
| abstract_inverted_index.have | 7, 38 |
| abstract_inverted_index.high | 113 |
| abstract_inverted_index.last | 3 |
| abstract_inverted_index.like | 19 |
| abstract_inverted_index.loss | 141 |
| abstract_inverted_index.that | 128 |
| abstract_inverted_index.were | 142 |
| abstract_inverted_index.clear | 31 |
| abstract_inverted_index.model | 96 |
| abstract_inverted_index.point | 66, 81 |
| abstract_inverted_index.rate. | 123 |
| abstract_inverted_index.study | 52, 151 |
| abstract_inverted_index.where | 21 |
| abstract_inverted_index.while | 105 |
| abstract_inverted_index.Forest | 110 |
| abstract_inverted_index.Random | 109 |
| abstract_inverted_index.actual | 121 |
| abstract_inverted_index.become | 39 |
| abstract_inverted_index.change | 80 |
| abstract_inverted_index.define | 11 |
| abstract_inverted_index.detect | 13 |
| abstract_inverted_index.models | 100 |
| abstract_inverted_index.normal | 26 |
| abstract_inverted_index.packet | 140 |
| abstract_inverted_index.system | 59, 130, 162 |
| abstract_inverted_index.values | 91 |
| abstract_inverted_index.within | 68 |
| abstract_inverted_index.anomaly | 35, 62, 122, 148, 160 |
| abstract_inverted_index.closely | 118 |
| abstract_inverted_index.complex | 17 |
| abstract_inverted_index.decade, | 4 |
| abstract_inverted_index.deviate | 24 |
| abstract_inverted_index.employs | 72 |
| abstract_inverted_index.enhance | 95 |
| abstract_inverted_index.factors | 146 |
| abstract_inverted_index.machine | 57 |
| abstract_inverted_index.methods | 6 |
| abstract_inverted_index.models, | 86, 107 |
| abstract_inverted_index.network | 42, 61, 69, 134 |
| abstract_inverted_index.predict | 133 |
| abstract_inverted_index.resolve | 48 |
| abstract_inverted_index.results | 126 |
| abstract_inverted_index.systems | 37 |
| abstract_inverted_index.(94.3%), | 111 |
| abstract_inverted_index.Although | 28 |
| abstract_inverted_index.Methods: | 50 |
| abstract_inverted_index.Results: | 98 |
| abstract_inverted_index.accuracy | 114 |
| abstract_inverted_index.advance. | 137 |
| abstract_inverted_index.captured | 102 |
| abstract_inverted_index.defining | 29 |
| abstract_inverted_index.develops | 53 |
| abstract_inverted_index.focusing | 64 |
| abstract_inverted_index.identify | 46, 88 |
| abstract_inverted_index.indicate | 127 |
| abstract_inverted_index.learning | 77 |
| abstract_inverted_index.numerous | 5 |
| abstract_inverted_index.proposed | 9 |
| abstract_inverted_index.standard | 32 |
| abstract_inverted_index.temporal | 103 |
| abstract_inverted_index.traffic. | 70 |
| abstract_inverted_index.utilized | 93 |
| abstract_inverted_index.validate | 164 |
| abstract_inverted_index.anomalies | 22, 67, 135 |
| abstract_inverted_index.detection | 36, 161 |
| abstract_inverted_index.essential | 40 |
| abstract_inverted_index.evaluates | 55 |
| abstract_inverted_index.including | 79 |
| abstract_inverted_index.networks, | 20 |
| abstract_inverted_index.outliers, | 14 |
| abstract_inverted_index.patterns, | 104 |
| abstract_inverted_index.patterns. | 27 |
| abstract_inverted_index.potential | 154 |
| abstract_inverted_index.Congestion | 138 |
| abstract_inverted_index.accurately | 132 |
| abstract_inverted_index.anomalies, | 117 |
| abstract_inverted_index.anomalies. | 89 |
| abstract_inverted_index.deployment | 157 |
| abstract_inverted_index.detection, | 63, 82 |
| abstract_inverted_index.detection. | 149 |
| abstract_inverted_index.identified | 143 |
| abstract_inverted_index.real-world | 156 |
| abstract_inverted_index.supervised | 76, 106 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.classifying | 116 |
| abstract_inverted_index.clustering, | 83 |
| abstract_inverted_index.effectively | 101 |
| abstract_inverted_index.efficiently | 45 |
| abstract_inverted_index.techniques, | 78 |
| abstract_inverted_index.Conclusions: | 124 |
| abstract_inverted_index.Experimental | 125 |
| abstract_inverted_index.Unsupervised | 99 |
| abstract_inverted_index.challenging, | 34 |
| abstract_inverted_index.demonstrated | 112 |
| abstract_inverted_index.demonstrates | 152 |
| abstract_inverted_index.environments | 18 |
| abstract_inverted_index.particularly | 15, 108 |
| abstract_inverted_index.scalability. | 166 |
| abstract_inverted_index.unsupervised | 74 |
| abstract_inverted_index.approximating | 119 |
| abstract_inverted_index.significantly | 23 |
| abstract_inverted_index.administrators | 43 |
| abstract_inverted_index.classification | 85 |
| abstract_inverted_index.learning-based | 58 |
| abstract_inverted_index.irregularities. | 49 |
| abstract_inverted_index.interpretability. | 97 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.96114308 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |