Machine learning-based prediction of 90-day prognosis and in-hospital mortality in hemorrhagic stroke patients Article Swipe
Ahmad A. Abujaber
,
Ibrahem Albalkhi
,
Yahia Imam
,
Said Yaseen
,
Abdulqadir J. Nashwan
,
Naveed Akhtar
,
Ibraheem M. Alkhawaldeh
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-90944-x
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-90944-x
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-90944-x
- https://www.nature.com/articles/s41598-025-90944-x.pdf
- OA Status
- gold
- Cited By
- 4
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410234805
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410234805Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-90944-xDigital Object Identifier
- Title
-
Machine learning-based prediction of 90-day prognosis and in-hospital mortality in hemorrhagic stroke patientsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-09Full publication date if available
- Authors
-
Ahmad A. Abujaber, Ibrahem Albalkhi, Yahia Imam, Said Yaseen, Abdulqadir J. Nashwan, Naveed Akhtar, Ibraheem M. AlkhawaldehList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-90944-xPublisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-90944-x.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-90944-x.pdfDirect OA link when available
- Concepts
-
Stroke (engine), Medicine, Logistic regression, Psychological intervention, Emergency medicine, Predictive modelling, Intensive care medicine, Physical therapy, Machine learning, Internal medicine, Computer science, Mechanical engineering, Psychiatry, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410234805 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-90944-x |
| ids.doi | https://doi.org/10.1038/s41598-025-90944-x |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40346168 |
| ids.openalex | https://openalex.org/W4410234805 |
| fwci | 18.40540199 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000069550 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Machine Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D017052 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Hospital Mortality |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D011379 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Prognosis |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008297 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Male |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D005260 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Female |
| mesh[6].qualifier_ui | Q000401 |
| mesh[6].descriptor_ui | D000083302 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | mortality |
| mesh[6].descriptor_name | Hemorrhagic Stroke |
| mesh[7].qualifier_ui | Q000175 |
| mesh[7].descriptor_ui | D000083302 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | diagnosis |
| mesh[7].descriptor_name | Hemorrhagic Stroke |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000368 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Aged |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D008875 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Middle Aged |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D012042 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Registries |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D012720 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Severity of Illness Index |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000369 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Aged, 80 and over |
| mesh[13].qualifier_ui | Q000401 |
| mesh[13].descriptor_ui | D020521 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | mortality |
| mesh[13].descriptor_name | Stroke |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D006801 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Humans |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000069550 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Machine Learning |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D017052 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Hospital Mortality |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D011379 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Prognosis |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D008297 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Male |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D005260 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Female |
| mesh[20].qualifier_ui | Q000401 |
| mesh[20].descriptor_ui | D000083302 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | mortality |
| mesh[20].descriptor_name | Hemorrhagic Stroke |
| mesh[21].qualifier_ui | Q000175 |
| mesh[21].descriptor_ui | D000083302 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | diagnosis |
| mesh[21].descriptor_name | Hemorrhagic Stroke |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000368 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Aged |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D008875 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Middle Aged |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D012042 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Registries |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D012720 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Severity of Illness Index |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D000369 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Aged, 80 and over |
| mesh[27].qualifier_ui | Q000401 |
| mesh[27].descriptor_ui | D020521 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | mortality |
| mesh[27].descriptor_name | Stroke |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D006801 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Humans |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D000069550 |
| mesh[29].is_major_topic | True |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Machine Learning |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D017052 |
| mesh[30].is_major_topic | True |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Hospital Mortality |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D011379 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Prognosis |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D008297 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Male |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D005260 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Female |
| mesh[34].qualifier_ui | Q000401 |
| mesh[34].descriptor_ui | D000083302 |
| mesh[34].is_major_topic | True |
| mesh[34].qualifier_name | mortality |
| mesh[34].descriptor_name | Hemorrhagic Stroke |
| mesh[35].qualifier_ui | Q000175 |
| mesh[35].descriptor_ui | D000083302 |
| mesh[35].is_major_topic | True |
| mesh[35].qualifier_name | diagnosis |
| mesh[35].descriptor_name | Hemorrhagic Stroke |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D000368 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Aged |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D008875 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Middle Aged |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D012042 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Registries |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D012720 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Severity of Illness Index |
| mesh[40].qualifier_ui | |
| mesh[40].descriptor_ui | D000369 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | |
| mesh[40].descriptor_name | Aged, 80 and over |
| mesh[41].qualifier_ui | Q000401 |
| mesh[41].descriptor_ui | D020521 |
| mesh[41].is_major_topic | True |
| mesh[41].qualifier_name | mortality |
| mesh[41].descriptor_name | Stroke |
| type | article |
| title | Machine learning-based prediction of 90-day prognosis and in-hospital mortality in hemorrhagic stroke patients |
| awards[0].id | https://openalex.org/G1624721829 |
| awards[0].funder_id | https://openalex.org/F4320310110 |
| awards[0].display_name | |
| awards[0].funder_award_id | MRC-01-22-594 |
| awards[0].funder_display_name | Hamad Medical Corporation |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 16242 |
| biblio.first_page | 16242 |
| topics[0].id | https://openalex.org/T10227 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Acute Ischemic Stroke Management |
| topics[1].id | https://openalex.org/T10510 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9715999960899353 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2742 |
| topics[1].subfield.display_name | Rehabilitation |
| topics[1].display_name | Stroke Rehabilitation and Recovery |
| topics[2].id | https://openalex.org/T10816 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9427000284194946 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2740 |
| topics[2].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[2].display_name | Cerebrovascular and Carotid Artery Diseases |
| funders[0].id | https://openalex.org/F4320310110 |
| funders[0].ror | https://ror.org/02zwb6n98 |
| funders[0].display_name | Hamad Medical Corporation |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C2780645631 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8016412258148193 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q671554 |
| concepts[0].display_name | Stroke (engine) |
| concepts[1].id | https://openalex.org/C71924100 |
| concepts[1].level | 0 |
| concepts[1].score | 0.704293429851532 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[1].display_name | Medicine |
| concepts[2].id | https://openalex.org/C151956035 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6608028411865234 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[2].display_name | Logistic regression |
| concepts[3].id | https://openalex.org/C27415008 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5858003497123718 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7256382 |
| concepts[3].display_name | Psychological intervention |
| concepts[4].id | https://openalex.org/C194828623 |
| concepts[4].level | 1 |
| concepts[4].score | 0.45671287178993225 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2861470 |
| concepts[4].display_name | Emergency medicine |
| concepts[5].id | https://openalex.org/C45804977 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4562183618545532 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[5].display_name | Predictive modelling |
| concepts[6].id | https://openalex.org/C177713679 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3624630570411682 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q679690 |
| concepts[6].display_name | Intensive care medicine |
| concepts[7].id | https://openalex.org/C1862650 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3320969343185425 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q186005 |
| concepts[7].display_name | Physical therapy |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.19877922534942627 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C126322002 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1867677867412567 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[9].display_name | Internal medicine |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.12678387761116028 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C78519656 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[11].display_name | Mechanical engineering |
| concepts[12].id | https://openalex.org/C118552586 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[12].display_name | Psychiatry |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/stroke |
| keywords[0].score | 0.8016412258148193 |
| keywords[0].display_name | Stroke (engine) |
| keywords[1].id | https://openalex.org/keywords/medicine |
| keywords[1].score | 0.704293429851532 |
| keywords[1].display_name | Medicine |
| keywords[2].id | https://openalex.org/keywords/logistic-regression |
| keywords[2].score | 0.6608028411865234 |
| keywords[2].display_name | Logistic regression |
| keywords[3].id | https://openalex.org/keywords/psychological-intervention |
| keywords[3].score | 0.5858003497123718 |
| keywords[3].display_name | Psychological intervention |
| keywords[4].id | https://openalex.org/keywords/emergency-medicine |
| keywords[4].score | 0.45671287178993225 |
| keywords[4].display_name | Emergency medicine |
| keywords[5].id | https://openalex.org/keywords/predictive-modelling |
| keywords[5].score | 0.4562183618545532 |
| keywords[5].display_name | Predictive modelling |
| keywords[6].id | https://openalex.org/keywords/intensive-care-medicine |
| keywords[6].score | 0.3624630570411682 |
| keywords[6].display_name | Intensive care medicine |
| keywords[7].id | https://openalex.org/keywords/physical-therapy |
| keywords[7].score | 0.3320969343185425 |
| keywords[7].display_name | Physical therapy |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.19877922534942627 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/internal-medicine |
| keywords[9].score | 0.1867677867412567 |
| keywords[9].display_name | Internal medicine |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.12678387761116028 |
| keywords[10].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-90944-x |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-90944-x.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-90944-x |
| locations[1].id | pmid:40346168 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40346168 |
| locations[2].id | pmh:oai:doaj.org/article:bb8b67f90d084b458d7a7a158841c07c |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-12 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/bb8b67f90d084b458d7a7a158841c07c |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12064682 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12064682 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5040368019 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8704-4991 |
| authorships[0].author.display_name | Ahmad A. Abujaber |
| authorships[0].countries | QA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I49828101 |
| authorships[0].affiliations[0].raw_affiliation_string | Nursing Department, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar. |
| authorships[0].institutions[0].id | https://openalex.org/I49828101 |
| authorships[0].institutions[0].ror | https://ror.org/02zwb6n98 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I49828101 |
| authorships[0].institutions[0].country_code | QA |
| authorships[0].institutions[0].display_name | Hamad Medical Corporation |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ahmad A Abujaber |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Nursing Department, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar. |
| authorships[1].author.id | https://openalex.org/A5037651354 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2729-514X |
| authorships[1].author.display_name | Ibrahem Albalkhi |
| authorships[1].countries | GB, SA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2800349819 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond St, London, WC1N 3JH, UK. |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I134359838 |
| authorships[1].affiliations[1].raw_affiliation_string | College of Medicine, Alfaisal University, Riyadh, Saudi Arabia. |
| authorships[1].institutions[0].id | https://openalex.org/I2800349819 |
| authorships[1].institutions[0].ror | https://ror.org/03zydm450 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I2800349819 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Great Ormond Street Hospital for Children NHS Foundation Trust |
| authorships[1].institutions[1].id | https://openalex.org/I134359838 |
| authorships[1].institutions[1].ror | https://ror.org/00cdrtq48 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I134359838 |
| authorships[1].institutions[1].country_code | SA |
| authorships[1].institutions[1].display_name | Alfaisal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ibrahem Albalkhi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Medicine, Alfaisal University, Riyadh, Saudi Arabia., Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond St, London, WC1N 3JH, UK. |
| authorships[2].author.id | https://openalex.org/A5090801007 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4623-733X |
| authorships[2].author.display_name | Yahia Imam |
| authorships[2].countries | QA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I49828101 |
| authorships[2].affiliations[0].raw_affiliation_string | Neurology Section, Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar. |
| authorships[2].institutions[0].id | https://openalex.org/I49828101 |
| authorships[2].institutions[0].ror | https://ror.org/02zwb6n98 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I49828101 |
| authorships[2].institutions[0].country_code | QA |
| authorships[2].institutions[0].display_name | Hamad Medical Corporation |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yahia Imam |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Neurology Section, Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar. |
| authorships[3].author.id | https://openalex.org/A5111064260 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Said Yaseen |
| authorships[3].countries | JO |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I156983542 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Medicine, Jordan University of Science and Technology, Irbid, Jordan. |
| authorships[3].institutions[0].id | https://openalex.org/I156983542 |
| authorships[3].institutions[0].ror | https://ror.org/03y8mtb59 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I156983542 |
| authorships[3].institutions[0].country_code | JO |
| authorships[3].institutions[0].display_name | Jordan University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Said Yaseen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Medicine, Jordan University of Science and Technology, Irbid, Jordan. |
| authorships[4].author.id | https://openalex.org/A5072402135 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4845-4119 |
| authorships[4].author.display_name | Abdulqadir J. Nashwan |
| authorships[4].countries | QA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I49828101 |
| authorships[4].affiliations[0].raw_affiliation_string | Nursing Department, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar. [email protected]. |
| authorships[4].institutions[0].id | https://openalex.org/I49828101 |
| authorships[4].institutions[0].ror | https://ror.org/02zwb6n98 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I49828101 |
| authorships[4].institutions[0].country_code | QA |
| authorships[4].institutions[0].display_name | Hamad Medical Corporation |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Abdulqadir J Nashwan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Nursing Department, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar. [email protected]. |
| authorships[5].author.id | https://openalex.org/A5103837157 |
| authorships[5].author.orcid | https://orcid.org/0009-0005-6999-9865 |
| authorships[5].author.display_name | Naveed Akhtar |
| authorships[5].countries | QA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I49828101 |
| authorships[5].affiliations[0].raw_affiliation_string | Neurology Section, Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar. |
| authorships[5].institutions[0].id | https://openalex.org/I49828101 |
| authorships[5].institutions[0].ror | https://ror.org/02zwb6n98 |
| authorships[5].institutions[0].type | nonprofit |
| authorships[5].institutions[0].lineage | https://openalex.org/I49828101 |
| authorships[5].institutions[0].country_code | QA |
| authorships[5].institutions[0].display_name | Hamad Medical Corporation |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Naveed Akhtar |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Neurology Section, Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar. |
| authorships[6].author.id | https://openalex.org/A5062030366 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0187-1583 |
| authorships[6].author.display_name | Ibraheem M. Alkhawaldeh |
| authorships[6].countries | JO |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I21173400 |
| authorships[6].affiliations[0].raw_affiliation_string | Faculty of Medicine, Mutah University, Al-Karak, Jordan. |
| authorships[6].institutions[0].id | https://openalex.org/I21173400 |
| authorships[6].institutions[0].ror | https://ror.org/008g9ns82 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I21173400 |
| authorships[6].institutions[0].country_code | JO |
| authorships[6].institutions[0].display_name | Mutah University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Ibrahim M Alkhawaldeh |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Faculty of Medicine, Mutah University, Al-Karak, Jordan. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-90944-x.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine learning-based prediction of 90-day prognosis and in-hospital mortality in hemorrhagic stroke patients |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10227 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Acute Ischemic Stroke Management |
| related_works | https://openalex.org/W2129863591, https://openalex.org/W2900068172, https://openalex.org/W2238030311, https://openalex.org/W1982842519, https://openalex.org/W2166644286, https://openalex.org/W2590898204, https://openalex.org/W2090248941, https://openalex.org/W4404118746, https://openalex.org/W2087256839, https://openalex.org/W4385216705 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-90944-x |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-90944-x.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-90944-x |
| primary_location.id | doi:10.1038/s41598-025-90944-x |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-90944-x.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-90944-x |
| publication_date | 2025-05-09 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4307584895, https://openalex.org/W2921112006, https://openalex.org/W2083600673, https://openalex.org/W2077194971, https://openalex.org/W2157622195, https://openalex.org/W2913112014, https://openalex.org/W3134480555, https://openalex.org/W4200170324, https://openalex.org/W4280506806, https://openalex.org/W3088017652, https://openalex.org/W2965403243, https://openalex.org/W2996974725, https://openalex.org/W2345387124, https://openalex.org/W2049605481, https://openalex.org/W4319597715, https://openalex.org/W4220693900, https://openalex.org/W3175275421, https://openalex.org/W3140756655, https://openalex.org/W2142017863, https://openalex.org/W2087411027, https://openalex.org/W2004008456, https://openalex.org/W3093715621, https://openalex.org/W4225843189, https://openalex.org/W2103048988, https://openalex.org/W2116003719, https://openalex.org/W3123786131, https://openalex.org/W2969288292, https://openalex.org/W4283729092, https://openalex.org/W3215853457, https://openalex.org/W3104236805, https://openalex.org/W4287218201, https://openalex.org/W4365149146, https://openalex.org/W2337004113, https://openalex.org/W2000543257, https://openalex.org/W2075368594, https://openalex.org/W2959483416, https://openalex.org/W2030259518, https://openalex.org/W2523357751, https://openalex.org/W2297100155, https://openalex.org/W2021222916 |
| referenced_works_count | 40 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.97870764 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |