Machine learning-based prediction of one-year mortality in ischemic stroke patients Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1093/oons/kvae011
Background: Accurate prediction of mortality following an ischemic stroke is essential for tailoring personalized treatment strategies. This study evaluates the effectiveness of machine learning models in predicting one-year mortality after an ischemic stroke. Methods: Five machine learning models were trained using data from a national stroke registry, with logistic regression demonstrating the highest performance. The SHapley Additive exPlanations (SHAP) analysis explained the model’s outcomes and defined the influential predictive factors. Results: Analyzing 8183 ischemic stroke patients, logistic regression achieved 83% accuracy, 0.89 AUC, and an F1 score of 0.83. Significant predictors included stroke severity, pre-stroke functional status, age, hospital-acquired pneumonia, ischemic stroke subtype, tobacco use, and co-existing diabetes mellitus (DM). Discussion: The model highlights the importance of predicting mortality in enhancing personalized stroke care. Apart from pneumonia, all predictors can serve the early prediction of mortality risk which supports the initiation of early preventive measures and in setting realistic expectations of disease outcomes for all stakeholders. The identified tobacco paradox warrants further investigation. Conclusion: This study offers a promising tool for early prediction of stroke mortality and for advancing personalized stroke care. It emphasizes the need for prospective studies to validate these findings in diverse clinical settings.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/oons/kvae011
- https://academic.oup.com/oons/advance-article-pdf/doi/10.1093/oons/kvae011/60678054/kvae011.pdf
- OA Status
- diamond
- Cited By
- 2
- References
- 72
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404350655
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404350655Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/oons/kvae011Digital Object Identifier
- Title
-
Machine learning-based prediction of one-year mortality in ischemic stroke patientsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Ahmad A. Abujaber, Said Yaseen, Yahia Imam, Abdulqadir J. Nashwan, Naveed AkhtarList of authors in order
- Landing page
-
https://doi.org/10.1093/oons/kvae011Publisher landing page
- PDF URL
-
https://academic.oup.com/oons/advance-article-pdf/doi/10.1093/oons/kvae011/60678054/kvae011.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/oons/advance-article-pdf/doi/10.1093/oons/kvae011/60678054/kvae011.pdfDirect OA link when available
- Concepts
-
Ischemic stroke, Stroke (engine), Medicine, Artificial intelligence, Cardiology, Internal medicine, Machine learning, Physical medicine and rehabilitation, Computer science, Ischemia, Engineering, Mechanical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
72Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404350655 |
|---|---|
| doi | https://doi.org/10.1093/oons/kvae011 |
| ids.doi | https://doi.org/10.1093/oons/kvae011 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39569400 |
| ids.openalex | https://openalex.org/W4404350655 |
| fwci | 1.84310621 |
| type | article |
| title | Machine learning-based prediction of one-year mortality in ischemic stroke patients |
| biblio.issue | |
| biblio.volume | 3 |
| biblio.last_page | kvae011 |
| biblio.first_page | kvae011 |
| topics[0].id | https://openalex.org/T10227 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Acute Ischemic Stroke Management |
| topics[1].id | https://openalex.org/T11396 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9955000281333923 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Artificial Intelligence in Healthcare |
| topics[2].id | https://openalex.org/T13702 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9901999831199646 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C3020199598 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5977431535720825 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12202 |
| concepts[0].display_name | Ischemic stroke |
| concepts[1].id | https://openalex.org/C2780645631 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5070440769195557 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q671554 |
| concepts[1].display_name | Stroke (engine) |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4588499665260315 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.37964004278182983 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C164705383 |
| concepts[4].level | 1 |
| concepts[4].score | 0.37955713272094727 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[4].display_name | Cardiology |
| concepts[5].id | https://openalex.org/C126322002 |
| concepts[5].level | 1 |
| concepts[5].score | 0.35230469703674316 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[5].display_name | Internal medicine |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3495238423347473 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C99508421 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33811190724372864 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[7].display_name | Physical medicine and rehabilitation |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.32446426153182983 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C541997718 |
| concepts[9].level | 2 |
| concepts[9].score | 0.17772918939590454 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q188151 |
| concepts[9].display_name | Ischemia |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.13410353660583496 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C78519656 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[11].display_name | Mechanical engineering |
| keywords[0].id | https://openalex.org/keywords/ischemic-stroke |
| keywords[0].score | 0.5977431535720825 |
| keywords[0].display_name | Ischemic stroke |
| keywords[1].id | https://openalex.org/keywords/stroke |
| keywords[1].score | 0.5070440769195557 |
| keywords[1].display_name | Stroke (engine) |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.4588499665260315 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.37964004278182983 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/cardiology |
| keywords[4].score | 0.37955713272094727 |
| keywords[4].display_name | Cardiology |
| keywords[5].id | https://openalex.org/keywords/internal-medicine |
| keywords[5].score | 0.35230469703674316 |
| keywords[5].display_name | Internal medicine |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.3495238423347473 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[7].score | 0.33811190724372864 |
| keywords[7].display_name | Physical medicine and rehabilitation |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.32446426153182983 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/ischemia |
| keywords[9].score | 0.17772918939590454 |
| keywords[9].display_name | Ischemia |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.13410353660583496 |
| keywords[10].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1093/oons/kvae011 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387280118 |
| locations[0].source.issn | 2753-149X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2753-149X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Oxford Open Neuroscience |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://academic.oup.com/oons/advance-article-pdf/doi/10.1093/oons/kvae011/60678054/kvae011.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Oxford Open Neuroscience |
| locations[0].landing_page_url | https://doi.org/10.1093/oons/kvae011 |
| locations[1].id | pmid:39569400 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Oxford open neuroscience |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39569400 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11576476 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Oxf Open Neurosci |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11576476 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5040368019 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8704-4991 |
| authorships[0].author.display_name | Ahmad A. Abujaber |
| authorships[0].countries | QA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I49828101 |
| authorships[0].affiliations[0].raw_affiliation_string | Nursing Department, Hamad Medical Corporation (HMC), Doha, Qatar |
| authorships[0].institutions[0].id | https://openalex.org/I49828101 |
| authorships[0].institutions[0].ror | https://ror.org/02zwb6n98 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I49828101 |
| authorships[0].institutions[0].country_code | QA |
| authorships[0].institutions[0].display_name | Hamad Medical Corporation |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ahmad Abujaber |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Nursing Department, Hamad Medical Corporation (HMC), Doha, Qatar |
| authorships[1].author.id | https://openalex.org/A5096742769 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-4563-7694 |
| authorships[1].author.display_name | Said Yaseen |
| authorships[1].countries | JO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I156983542 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Medicine, Jordan University of Science and Technology, Irbid, Jordan |
| authorships[1].institutions[0].id | https://openalex.org/I156983542 |
| authorships[1].institutions[0].ror | https://ror.org/03y8mtb59 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I156983542 |
| authorships[1].institutions[0].country_code | JO |
| authorships[1].institutions[0].display_name | Jordan University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Said Yaseen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Medicine, Jordan University of Science and Technology, Irbid, Jordan |
| authorships[2].author.id | https://openalex.org/A5090801007 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4623-733X |
| authorships[2].author.display_name | Yahia Imam |
| authorships[2].countries | QA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I49828101 |
| authorships[2].affiliations[0].raw_affiliation_string | Neurology Section, Neuroscience Institute, Hamad Medical Corporation (HMC), Doha, Qatar |
| authorships[2].institutions[0].id | https://openalex.org/I49828101 |
| authorships[2].institutions[0].ror | https://ror.org/02zwb6n98 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I49828101 |
| authorships[2].institutions[0].country_code | QA |
| authorships[2].institutions[0].display_name | Hamad Medical Corporation |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yahia Imam |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Neurology Section, Neuroscience Institute, Hamad Medical Corporation (HMC), Doha, Qatar |
| authorships[3].author.id | https://openalex.org/A5072402135 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4845-4119 |
| authorships[3].author.display_name | Abdulqadir J. Nashwan |
| authorships[3].countries | QA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I60342839 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I49828101 |
| authorships[3].affiliations[1].raw_affiliation_string | Nursing Department, Hamad Medical Corporation (HMC), Doha, Qatar |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I60342839 |
| authorships[3].affiliations[2].raw_affiliation_string | Qatar University , College of Health Sciences, QU Health, , 2713 Doha, |
| authorships[3].institutions[0].id | https://openalex.org/I49828101 |
| authorships[3].institutions[0].ror | https://ror.org/02zwb6n98 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I49828101 |
| authorships[3].institutions[0].country_code | QA |
| authorships[3].institutions[0].display_name | Hamad Medical Corporation |
| authorships[3].institutions[1].id | https://openalex.org/I60342839 |
| authorships[3].institutions[1].ror | https://ror.org/00yhnba62 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I60342839 |
| authorships[3].institutions[1].country_code | QA |
| authorships[3].institutions[1].display_name | Qatar University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Abdulqadir Nashwan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar, Nursing Department, Hamad Medical Corporation (HMC), Doha, Qatar, Qatar University , College of Health Sciences, QU Health, , 2713 Doha, |
| authorships[4].author.id | https://openalex.org/A5103837157 |
| authorships[4].author.orcid | https://orcid.org/0009-0005-6999-9865 |
| authorships[4].author.display_name | Naveed Akhtar |
| authorships[4].countries | QA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I49828101 |
| authorships[4].affiliations[0].raw_affiliation_string | Neuroradiology Department, Neuroscience Institute, Hamad Medical Corporation (HMC), Doha, Qatar |
| authorships[4].institutions[0].id | https://openalex.org/I49828101 |
| authorships[4].institutions[0].ror | https://ror.org/02zwb6n98 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I49828101 |
| authorships[4].institutions[0].country_code | QA |
| authorships[4].institutions[0].display_name | Hamad Medical Corporation |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Naveed Akhtar |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Neuroradiology Department, Neuroscience Institute, Hamad Medical Corporation (HMC), Doha, Qatar |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/oons/advance-article-pdf/doi/10.1093/oons/kvae011/60678054/kvae011.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine learning-based prediction of one-year mortality in ischemic stroke patients |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10227 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Acute Ischemic Stroke Management |
| related_works | https://openalex.org/W4387497383, https://openalex.org/W3183948672, https://openalex.org/W3173606202, https://openalex.org/W3110381201, https://openalex.org/W2948807893, https://openalex.org/W2935909890, https://openalex.org/W2899084033, https://openalex.org/W2778153218, https://openalex.org/W2758277628, https://openalex.org/W1531601525 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/oons/kvae011 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387280118 |
| best_oa_location.source.issn | 2753-149X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2753-149X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Oxford Open Neuroscience |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://academic.oup.com/oons/advance-article-pdf/doi/10.1093/oons/kvae011/60678054/kvae011.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Oxford Open Neuroscience |
| best_oa_location.landing_page_url | https://doi.org/10.1093/oons/kvae011 |
| primary_location.id | doi:10.1093/oons/kvae011 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387280118 |
| primary_location.source.issn | 2753-149X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2753-149X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Oxford Open Neuroscience |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://academic.oup.com/oons/advance-article-pdf/doi/10.1093/oons/kvae011/60678054/kvae011.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Oxford Open Neuroscience |
| primary_location.landing_page_url | https://doi.org/10.1093/oons/kvae011 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4307584895, https://openalex.org/W3045137842, https://openalex.org/W4205679663, https://openalex.org/W3082353979, https://openalex.org/W2049605481, https://openalex.org/W2993312422, https://openalex.org/W2792535737, https://openalex.org/W4206641494, https://openalex.org/W1966976587, https://openalex.org/W4285588130, https://openalex.org/W3205360896, https://openalex.org/W4200207143, https://openalex.org/W4296197803, https://openalex.org/W3175275421, https://openalex.org/W3197537534, https://openalex.org/W4319160457, https://openalex.org/W2996974725, https://openalex.org/W2906309466, https://openalex.org/W3140756655, https://openalex.org/W2942623521, https://openalex.org/W3168456428, https://openalex.org/W2129357435, https://openalex.org/W2071109361, https://openalex.org/W2004225684, https://openalex.org/W2969288292, https://openalex.org/W2465756763, https://openalex.org/W4391609103, https://openalex.org/W2348635850, https://openalex.org/W3087590821, https://openalex.org/W3093806486, https://openalex.org/W2109893884, https://openalex.org/W2080504768, https://openalex.org/W2138595885, https://openalex.org/W3091498442, https://openalex.org/W4380261295, https://openalex.org/W2916669046, https://openalex.org/W1976364950, https://openalex.org/W2163874082, https://openalex.org/W4294552392, https://openalex.org/W2342603028, https://openalex.org/W1680797894, https://openalex.org/W2993620107, https://openalex.org/W3172251174, https://openalex.org/W4206641356, https://openalex.org/W4294214983, https://openalex.org/W2999309192, https://openalex.org/W3182952703, https://openalex.org/W6737947904, https://openalex.org/W6748281036, https://openalex.org/W3088017652, https://openalex.org/W4220693900, https://openalex.org/W4389434861, https://openalex.org/W4319597715, https://openalex.org/W2215914629, https://openalex.org/W2141703296, https://openalex.org/W2898740896, https://openalex.org/W6771414036, https://openalex.org/W4283729092, https://openalex.org/W3215853457, https://openalex.org/W2803341311, https://openalex.org/W4388019841, https://openalex.org/W1955820088, https://openalex.org/W3011254849, https://openalex.org/W2981647529, https://openalex.org/W4321445890, https://openalex.org/W1974089564, https://openalex.org/W4377565940, https://openalex.org/W2891944185, https://openalex.org/W1997544404, https://openalex.org/W2067395123, https://openalex.org/W2962862931, https://openalex.org/W4295313945 |
| referenced_works_count | 72 |
| abstract_inverted_index.a | 44, 168 |
| abstract_inverted_index.F1 | 86 |
| abstract_inverted_index.It | 183 |
| abstract_inverted_index.an | 7, 31, 85 |
| abstract_inverted_index.in | 26, 120, 147, 194 |
| abstract_inverted_index.is | 10 |
| abstract_inverted_index.of | 4, 22, 88, 117, 135, 142, 151, 174 |
| abstract_inverted_index.to | 190 |
| abstract_inverted_index.83% | 80 |
| abstract_inverted_index.The | 55, 112, 157 |
| abstract_inverted_index.all | 128, 155 |
| abstract_inverted_index.and | 65, 84, 106, 146, 177 |
| abstract_inverted_index.can | 130 |
| abstract_inverted_index.for | 12, 154, 171, 178, 187 |
| abstract_inverted_index.the | 20, 52, 62, 67, 115, 132, 140, 185 |
| abstract_inverted_index.0.89 | 82 |
| abstract_inverted_index.8183 | 73 |
| abstract_inverted_index.AUC, | 83 |
| abstract_inverted_index.Five | 35 |
| abstract_inverted_index.This | 17, 165 |
| abstract_inverted_index.age, | 98 |
| abstract_inverted_index.data | 42 |
| abstract_inverted_index.from | 43, 126 |
| abstract_inverted_index.need | 186 |
| abstract_inverted_index.risk | 137 |
| abstract_inverted_index.tool | 170 |
| abstract_inverted_index.use, | 105 |
| abstract_inverted_index.were | 39 |
| abstract_inverted_index.with | 48 |
| abstract_inverted_index.(DM). | 110 |
| abstract_inverted_index.0.83. | 89 |
| abstract_inverted_index.Apart | 125 |
| abstract_inverted_index.after | 30 |
| abstract_inverted_index.care. | 124, 182 |
| abstract_inverted_index.early | 133, 143, 172 |
| abstract_inverted_index.model | 113 |
| abstract_inverted_index.score | 87 |
| abstract_inverted_index.serve | 131 |
| abstract_inverted_index.study | 18, 166 |
| abstract_inverted_index.these | 192 |
| abstract_inverted_index.using | 41 |
| abstract_inverted_index.which | 138 |
| abstract_inverted_index.(SHAP) | 59 |
| abstract_inverted_index.models | 25, 38 |
| abstract_inverted_index.offers | 167 |
| abstract_inverted_index.stroke | 9, 46, 75, 93, 102, 123, 175, 181 |
| abstract_inverted_index.SHapley | 56 |
| abstract_inverted_index.defined | 66 |
| abstract_inverted_index.disease | 152 |
| abstract_inverted_index.diverse | 195 |
| abstract_inverted_index.further | 162 |
| abstract_inverted_index.highest | 53 |
| abstract_inverted_index.machine | 23, 36 |
| abstract_inverted_index.paradox | 160 |
| abstract_inverted_index.setting | 148 |
| abstract_inverted_index.status, | 97 |
| abstract_inverted_index.stroke. | 33 |
| abstract_inverted_index.studies | 189 |
| abstract_inverted_index.tobacco | 104, 159 |
| abstract_inverted_index.trained | 40 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Accurate | 2 |
| abstract_inverted_index.Additive | 57 |
| abstract_inverted_index.Methods: | 34 |
| abstract_inverted_index.Results: | 71 |
| abstract_inverted_index.achieved | 79 |
| abstract_inverted_index.analysis | 60 |
| abstract_inverted_index.clinical | 196 |
| abstract_inverted_index.diabetes | 108 |
| abstract_inverted_index.factors. | 70 |
| abstract_inverted_index.findings | 193 |
| abstract_inverted_index.included | 92 |
| abstract_inverted_index.ischemic | 8, 32, 74, 101 |
| abstract_inverted_index.learning | 24, 37 |
| abstract_inverted_index.logistic | 49, 77 |
| abstract_inverted_index.measures | 145 |
| abstract_inverted_index.mellitus | 109 |
| abstract_inverted_index.national | 45 |
| abstract_inverted_index.one-year | 28 |
| abstract_inverted_index.outcomes | 64, 153 |
| abstract_inverted_index.subtype, | 103 |
| abstract_inverted_index.supports | 139 |
| abstract_inverted_index.validate | 191 |
| abstract_inverted_index.warrants | 161 |
| abstract_inverted_index.Analyzing | 72 |
| abstract_inverted_index.accuracy, | 81 |
| abstract_inverted_index.advancing | 179 |
| abstract_inverted_index.enhancing | 121 |
| abstract_inverted_index.essential | 11 |
| abstract_inverted_index.evaluates | 19 |
| abstract_inverted_index.explained | 61 |
| abstract_inverted_index.following | 6 |
| abstract_inverted_index.model’s | 63 |
| abstract_inverted_index.mortality | 5, 29, 119, 136, 176 |
| abstract_inverted_index.patients, | 76 |
| abstract_inverted_index.promising | 169 |
| abstract_inverted_index.realistic | 149 |
| abstract_inverted_index.registry, | 47 |
| abstract_inverted_index.settings. | 197 |
| abstract_inverted_index.severity, | 94 |
| abstract_inverted_index.tailoring | 13 |
| abstract_inverted_index.treatment | 15 |
| abstract_inverted_index.emphasizes | 184 |
| abstract_inverted_index.functional | 96 |
| abstract_inverted_index.highlights | 114 |
| abstract_inverted_index.identified | 158 |
| abstract_inverted_index.importance | 116 |
| abstract_inverted_index.initiation | 141 |
| abstract_inverted_index.pneumonia, | 100, 127 |
| abstract_inverted_index.pre-stroke | 95 |
| abstract_inverted_index.predicting | 27, 118 |
| abstract_inverted_index.prediction | 3, 134, 173 |
| abstract_inverted_index.predictive | 69 |
| abstract_inverted_index.predictors | 91, 129 |
| abstract_inverted_index.preventive | 144 |
| abstract_inverted_index.regression | 50, 78 |
| abstract_inverted_index.Background: | 1 |
| abstract_inverted_index.Conclusion: | 164 |
| abstract_inverted_index.Discussion: | 111 |
| abstract_inverted_index.Significant | 90 |
| abstract_inverted_index.co-existing | 107 |
| abstract_inverted_index.influential | 68 |
| abstract_inverted_index.prospective | 188 |
| abstract_inverted_index.strategies. | 16 |
| abstract_inverted_index.exPlanations | 58 |
| abstract_inverted_index.expectations | 150 |
| abstract_inverted_index.performance. | 54 |
| abstract_inverted_index.personalized | 14, 122, 180 |
| abstract_inverted_index.demonstrating | 51 |
| abstract_inverted_index.effectiveness | 21 |
| abstract_inverted_index.stakeholders. | 156 |
| abstract_inverted_index.investigation. | 163 |
| abstract_inverted_index.hospital-acquired | 99 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8899999856948853 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.80102195 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |