Machine Learning-Based Quantification of Lateral Flow Assay Using Smartphone-Captured Images Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/bios15010019
Lateral flow assay has been extensively used for at-home testing and point-of-care diagnostics in rural areas. Despite its advantages as convenient and low-cost testing, it suffers from poor quantification capacity where only yes/no or positive/negative diagnostics are achieved. In this study, machine learning and deep learning models were developed to quantify the analyte load from smartphone-captured images of the lateral flow assay test. The comparative analysis identified that random forest and convolutional neural network (CNN) models performed well in classifying the lateral flow assay results compared to other well-established machine learning models. When trained on small-size images, random forest models excelled CNN models in image classification. Contrarily, CNN models outperformed random forest models in classifying noisy images.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/bios15010019
- OA Status
- gold
- Cited By
- 9
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406102618
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406102618Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/bios15010019Digital Object Identifier
- Title
-
Machine Learning-Based Quantification of Lateral Flow Assay Using Smartphone-Captured ImagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-04Full publication date if available
- Authors
-
Andrew S. Davis, Asahi TomitakaList of authors in order
- Landing page
-
https://doi.org/10.3390/bios15010019Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/bios15010019Direct OA link when available
- Concepts
-
Random forest, Convolutional neural network, Artificial intelligence, Computer science, Deep learning, Machine learning, Pattern recognition (psychology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406102618 |
|---|---|
| doi | https://doi.org/10.3390/bios15010019 |
| ids.doi | https://doi.org/10.3390/bios15010019 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39852070 |
| ids.openalex | https://openalex.org/W4406102618 |
| fwci | 17.93575627 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000068997 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Smartphone |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000069550 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Machine Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D016571 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Neural Networks, Computer |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D007091 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Image Processing, Computer-Assisted |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000077321 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Deep Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000068997 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Smartphone |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000069550 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Machine Learning |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D016571 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Neural Networks, Computer |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D007091 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Image Processing, Computer-Assisted |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000077321 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Deep Learning |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000068997 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Smartphone |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000069550 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Machine Learning |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D016571 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Neural Networks, Computer |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D006801 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Humans |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000077321 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Deep Learning |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000068997 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Smartphone |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D000069550 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Machine Learning |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D016571 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Neural Networks, Computer |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D006801 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Humans |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D007091 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Image Processing, Computer-Assisted |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000077321 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Deep Learning |
| type | article |
| title | Machine Learning-Based Quantification of Lateral Flow Assay Using Smartphone-Captured Images |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 19 |
| biblio.first_page | 19 |
| topics[0].id | https://openalex.org/T11393 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Biosensors and Analytical Detection |
| topics[1].id | https://openalex.org/T11754 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2725 |
| topics[1].subfield.display_name | Infectious Diseases |
| topics[1].display_name | SARS-CoV-2 detection and testing |
| topics[2].id | https://openalex.org/T11667 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9824000000953674 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced Chemical Sensor Technologies |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C169258074 |
| concepts[0].level | 2 |
| concepts[0].score | 0.849553108215332 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[0].display_name | Random forest |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7995738983154297 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7083709836006165 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6463067531585693 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5928176045417786 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.584498405456543 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4310782253742218 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| keywords[0].id | https://openalex.org/keywords/random-forest |
| keywords[0].score | 0.849553108215332 |
| keywords[0].display_name | Random forest |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.7995738983154297 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7083709836006165 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6463067531585693 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.5928176045417786 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.584498405456543 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4310782253742218 |
| keywords[6].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.3390/bios15010019 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S150925516 |
| locations[0].source.issn | 2079-6374 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-6374 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Biosensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Biosensors |
| locations[0].landing_page_url | https://doi.org/10.3390/bios15010019 |
| locations[1].id | pmid:39852070 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Biosensors |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39852070 |
| locations[2].id | pmh:oai:doaj.org/article:f901d16580704b37ae93b870b6036867 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Biosensors, Vol 15, Iss 1, p 19 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/f901d16580704b37ae93b870b6036867 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11763061 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Biosensors (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11763061 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5054135896 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7357-2283 |
| authorships[0].author.display_name | Andrew S. Davis |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I173388201 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer and Information Sciences, University of Houston-Victoria, Victoria, TX 77904, USA |
| authorships[0].institutions[0].id | https://openalex.org/I173388201 |
| authorships[0].institutions[0].ror | https://ror.org/01khwek78 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I173388201 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Houston - Victoria |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Anne M. Davis |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer and Information Sciences, University of Houston-Victoria, Victoria, TX 77904, USA |
| authorships[1].author.id | https://openalex.org/A5027652363 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1234-6047 |
| authorships[1].author.display_name | Asahi Tomitaka |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I173388201 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer and Information Sciences, University of Houston-Victoria, Victoria, TX 77904, USA |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I172980758 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Computer Science, Kennesaw State University, Marietta, GA 30060, USA |
| authorships[1].institutions[0].id | https://openalex.org/I172980758 |
| authorships[1].institutions[0].ror | https://ror.org/00jeqjx33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I172980758 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Kennesaw State University |
| authorships[1].institutions[1].id | https://openalex.org/I173388201 |
| authorships[1].institutions[1].ror | https://ror.org/01khwek78 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I173388201 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | University of Houston - Victoria |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Asahi Tomitaka |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Kennesaw State University, Marietta, GA 30060, USA, Department of Computer and Information Sciences, University of Houston-Victoria, Victoria, TX 77904, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/bios15010019 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine Learning-Based Quantification of Lateral Flow Assay Using Smartphone-Captured Images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11393 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Biosensors and Analytical Detection |
| related_works | https://openalex.org/W3193043704, https://openalex.org/W4386259002, https://openalex.org/W1546989560, https://openalex.org/W4226493464, https://openalex.org/W4394984040, https://openalex.org/W4372048956, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983, https://openalex.org/W4380075502 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/bios15010019 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S150925516 |
| best_oa_location.source.issn | 2079-6374 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-6374 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Biosensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Biosensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/bios15010019 |
| primary_location.id | doi:10.3390/bios15010019 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S150925516 |
| primary_location.source.issn | 2079-6374 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-6374 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Biosensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Biosensors |
| primary_location.landing_page_url | https://doi.org/10.3390/bios15010019 |
| publication_date | 2025-01-04 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3103240054, https://openalex.org/W2105613624, https://openalex.org/W4294805149, https://openalex.org/W4394019215, https://openalex.org/W4293680676, https://openalex.org/W2428432840, https://openalex.org/W3047951822, https://openalex.org/W4366817470, https://openalex.org/W2995942064, https://openalex.org/W2973159718, https://openalex.org/W3134619965, https://openalex.org/W4283830524, https://openalex.org/W3172090041, https://openalex.org/W4392128456, https://openalex.org/W4319982587, https://openalex.org/W2112796928, https://openalex.org/W3095153958, https://openalex.org/W6846841974, https://openalex.org/W4285093809, https://openalex.org/W2466877391, https://openalex.org/W3217175436, https://openalex.org/W3046220160, https://openalex.org/W2520099878, https://openalex.org/W1992963794, https://openalex.org/W3087009452, https://openalex.org/W2898136110, https://openalex.org/W4310643051, https://openalex.org/W3105158720 |
| referenced_works_count | 28 |
| abstract_inverted_index.In | 38 |
| abstract_inverted_index.as | 19 |
| abstract_inverted_index.in | 13, 78, 103, 113 |
| abstract_inverted_index.it | 24 |
| abstract_inverted_index.of | 57 |
| abstract_inverted_index.on | 94 |
| abstract_inverted_index.or | 33 |
| abstract_inverted_index.to | 49, 86 |
| abstract_inverted_index.CNN | 101, 107 |
| abstract_inverted_index.The | 63 |
| abstract_inverted_index.and | 10, 21, 43, 70 |
| abstract_inverted_index.are | 36 |
| abstract_inverted_index.for | 7 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.its | 17 |
| abstract_inverted_index.the | 51, 58, 80 |
| abstract_inverted_index.When | 92 |
| abstract_inverted_index.been | 4 |
| abstract_inverted_index.deep | 44 |
| abstract_inverted_index.flow | 1, 60, 82 |
| abstract_inverted_index.from | 26, 54 |
| abstract_inverted_index.load | 53 |
| abstract_inverted_index.only | 31 |
| abstract_inverted_index.poor | 27 |
| abstract_inverted_index.that | 67 |
| abstract_inverted_index.this | 39 |
| abstract_inverted_index.used | 6 |
| abstract_inverted_index.well | 77 |
| abstract_inverted_index.were | 47 |
| abstract_inverted_index.(CNN) | 74 |
| abstract_inverted_index.assay | 2, 61, 83 |
| abstract_inverted_index.image | 104 |
| abstract_inverted_index.noisy | 115 |
| abstract_inverted_index.other | 87 |
| abstract_inverted_index.rural | 14 |
| abstract_inverted_index.test. | 62 |
| abstract_inverted_index.where | 30 |
| abstract_inverted_index.areas. | 15 |
| abstract_inverted_index.forest | 69, 98, 111 |
| abstract_inverted_index.images | 56 |
| abstract_inverted_index.models | 46, 75, 99, 102, 108, 112 |
| abstract_inverted_index.neural | 72 |
| abstract_inverted_index.random | 68, 97, 110 |
| abstract_inverted_index.study, | 40 |
| abstract_inverted_index.yes/no | 32 |
| abstract_inverted_index.Despite | 16 |
| abstract_inverted_index.Lateral | 0 |
| abstract_inverted_index.analyte | 52 |
| abstract_inverted_index.at-home | 8 |
| abstract_inverted_index.images, | 96 |
| abstract_inverted_index.images. | 116 |
| abstract_inverted_index.lateral | 59, 81 |
| abstract_inverted_index.machine | 41, 89 |
| abstract_inverted_index.models. | 91 |
| abstract_inverted_index.network | 73 |
| abstract_inverted_index.results | 84 |
| abstract_inverted_index.suffers | 25 |
| abstract_inverted_index.testing | 9 |
| abstract_inverted_index.trained | 93 |
| abstract_inverted_index.analysis | 65 |
| abstract_inverted_index.capacity | 29 |
| abstract_inverted_index.compared | 85 |
| abstract_inverted_index.excelled | 100 |
| abstract_inverted_index.learning | 42, 45, 90 |
| abstract_inverted_index.low-cost | 22 |
| abstract_inverted_index.quantify | 50 |
| abstract_inverted_index.testing, | 23 |
| abstract_inverted_index.achieved. | 37 |
| abstract_inverted_index.developed | 48 |
| abstract_inverted_index.performed | 76 |
| abstract_inverted_index.advantages | 18 |
| abstract_inverted_index.convenient | 20 |
| abstract_inverted_index.identified | 66 |
| abstract_inverted_index.small-size | 95 |
| abstract_inverted_index.Contrarily, | 106 |
| abstract_inverted_index.classifying | 79, 114 |
| abstract_inverted_index.comparative | 64 |
| abstract_inverted_index.diagnostics | 12, 35 |
| abstract_inverted_index.extensively | 5 |
| abstract_inverted_index.outperformed | 109 |
| abstract_inverted_index.convolutional | 71 |
| abstract_inverted_index.point-of-care | 11 |
| abstract_inverted_index.quantification | 28 |
| abstract_inverted_index.classification. | 105 |
| abstract_inverted_index.well-established | 88 |
| abstract_inverted_index.positive/negative | 34 |
| abstract_inverted_index.smartphone-captured | 55 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5027652363 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I172980758, https://openalex.org/I173388201 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.46000000834465027 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile.value | 0.98017011 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |