Machine Learning-Based Structural Health Monitoring Technique for Crack Detection and Localisation Using Bluetooth Strain Gauge Sensor Network Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202409.1639.v1
Conventional approaches in Structural Health Monitoring (SHM) tend to be complex, destructive, and time-intensive. Additionally, they often require a large number of sensors to thoroughly assess structural integrity. In this study, we present a novel, non-destructive SHM framework based on machine learning (ML) for the accurate detection and localization of structural cracks. This approach leverages a minimal number of strain gauge sensors linked via Bluetooth communication. The framework is validated through empirical data collected from 3D carbon fiber-reinforced composites, including three distinct specimens, ranging from crack-free samples to specimens with up to ten cracks of varying lengths and depths. Strain data from five sensors were analyzed using a combination of Shewhart charts, Grubbs Test (GT), and a hierarchical clustering algorithm, specifically designed to evaluate and classify fractures. Our ML-based framework offers a streamlined and efficient alternative to traditional laboratory procedures, delivering precise crack detection with significant potential for applications in the composites industry.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202409.1639.v1
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402718339
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402718339Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202409.1639.v1Digital Object Identifier
- Title
-
Machine Learning-Based Structural Health Monitoring Technique for Crack Detection and Localisation Using Bluetooth Strain Gauge Sensor NetworkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-21Full publication date if available
- Authors
-
Tahereh Shah Mansouri, Gennady Lubarsky, Dewar Finlay, James McLaughlinList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202409.1639.v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.20944/preprints202409.1639.v1Direct OA link when available
- Concepts
-
Strain gauge, Bluetooth, Strain (injury), Structural health monitoring, Gauge (firearms), Computer science, Wireless sensor network, Artificial intelligence, Real-time computing, Engineering, Materials science, Structural engineering, Computer network, Wireless, Biology, Telecommunications, Anatomy, MetallurgyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402718339 |
|---|---|
| doi | https://doi.org/10.20944/preprints202409.1639.v1 |
| ids.doi | https://doi.org/10.20944/preprints202409.1639.v1 |
| ids.openalex | https://openalex.org/W4402718339 |
| fwci | 0.49093966 |
| type | preprint |
| title | Machine Learning-Based Structural Health Monitoring Technique for Crack Detection and Localisation Using Bluetooth Strain Gauge Sensor Network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10534 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9725000262260437 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Structural Health Monitoring Techniques |
| topics[1].id | https://openalex.org/T10205 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9577000141143799 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Fiber Optic Sensors |
| topics[2].id | https://openalex.org/T12564 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9175999760627747 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Sensor Technology and Measurement Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C60584519 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8343977928161621 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q610723 |
| concepts[0].display_name | Strain gauge |
| concepts[1].id | https://openalex.org/C546215728 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8012187480926514 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q39531 |
| concepts[1].display_name | Bluetooth |
| concepts[2].id | https://openalex.org/C2778022156 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5652333498001099 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q576145 |
| concepts[2].display_name | Strain (injury) |
| concepts[3].id | https://openalex.org/C2776247918 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5345434546470642 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1423713 |
| concepts[3].display_name | Structural health monitoring |
| concepts[4].id | https://openalex.org/C40976572 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5088691711425781 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2330873 |
| concepts[4].display_name | Gauge (firearms) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.44253626465797424 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C24590314 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4421241283416748 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q336038 |
| concepts[6].display_name | Wireless sensor network |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38183480501174927 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C79403827 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35533326864242554 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[8].display_name | Real-time computing |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.29850494861602783 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C192562407 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2752130329608917 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[10].display_name | Materials science |
| concepts[11].id | https://openalex.org/C66938386 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2586016356945038 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[11].display_name | Structural engineering |
| concepts[12].id | https://openalex.org/C31258907 |
| concepts[12].level | 1 |
| concepts[12].score | 0.18120673298835754 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[12].display_name | Computer network |
| concepts[13].id | https://openalex.org/C555944384 |
| concepts[13].level | 2 |
| concepts[13].score | 0.17996081709861755 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[13].display_name | Wireless |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.17802080512046814 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.11646652221679688 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C105702510 |
| concepts[16].level | 1 |
| concepts[16].score | 0.07629826664924622 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q514 |
| concepts[16].display_name | Anatomy |
| concepts[17].id | https://openalex.org/C191897082 |
| concepts[17].level | 1 |
| concepts[17].score | 0.07094231247901917 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[17].display_name | Metallurgy |
| keywords[0].id | https://openalex.org/keywords/strain-gauge |
| keywords[0].score | 0.8343977928161621 |
| keywords[0].display_name | Strain gauge |
| keywords[1].id | https://openalex.org/keywords/bluetooth |
| keywords[1].score | 0.8012187480926514 |
| keywords[1].display_name | Bluetooth |
| keywords[2].id | https://openalex.org/keywords/strain |
| keywords[2].score | 0.5652333498001099 |
| keywords[2].display_name | Strain (injury) |
| keywords[3].id | https://openalex.org/keywords/structural-health-monitoring |
| keywords[3].score | 0.5345434546470642 |
| keywords[3].display_name | Structural health monitoring |
| keywords[4].id | https://openalex.org/keywords/gauge |
| keywords[4].score | 0.5088691711425781 |
| keywords[4].display_name | Gauge (firearms) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.44253626465797424 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/wireless-sensor-network |
| keywords[6].score | 0.4421241283416748 |
| keywords[6].display_name | Wireless sensor network |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.38183480501174927 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/real-time-computing |
| keywords[8].score | 0.35533326864242554 |
| keywords[8].display_name | Real-time computing |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.29850494861602783 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/materials-science |
| keywords[10].score | 0.2752130329608917 |
| keywords[10].display_name | Materials science |
| keywords[11].id | https://openalex.org/keywords/structural-engineering |
| keywords[11].score | 0.2586016356945038 |
| keywords[11].display_name | Structural engineering |
| keywords[12].id | https://openalex.org/keywords/computer-network |
| keywords[12].score | 0.18120673298835754 |
| keywords[12].display_name | Computer network |
| keywords[13].id | https://openalex.org/keywords/wireless |
| keywords[13].score | 0.17996081709861755 |
| keywords[13].display_name | Wireless |
| keywords[14].id | https://openalex.org/keywords/biology |
| keywords[14].score | 0.17802080512046814 |
| keywords[14].display_name | Biology |
| keywords[15].id | https://openalex.org/keywords/telecommunications |
| keywords[15].score | 0.11646652221679688 |
| keywords[15].display_name | Telecommunications |
| keywords[16].id | https://openalex.org/keywords/anatomy |
| keywords[16].score | 0.07629826664924622 |
| keywords[16].display_name | Anatomy |
| keywords[17].id | https://openalex.org/keywords/metallurgy |
| keywords[17].score | 0.07094231247901917 |
| keywords[17].display_name | Metallurgy |
| language | en |
| locations[0].id | doi:10.20944/preprints202409.1639.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202409.1639.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5030910840 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4710-0546 |
| authorships[0].author.display_name | Tahereh Shah Mansouri |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tahereh Shah Mansouri |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5001190919 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3009-9334 |
| authorships[1].author.display_name | Gennady Lubarsky |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gennady Lubarsky |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5107957346 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Dewar Finlay |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dewar Finlay |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5045151799 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6026-8971 |
| authorships[3].author.display_name | James McLaughlin |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | James McLaughlin |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.20944/preprints202409.1639.v1 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine Learning-Based Structural Health Monitoring Technique for Crack Detection and Localisation Using Bluetooth Strain Gauge Sensor Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10534 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9725000262260437 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Structural Health Monitoring Techniques |
| related_works | https://openalex.org/W4220926637, https://openalex.org/W2362681120, https://openalex.org/W2376320007, https://openalex.org/W4376643979, https://openalex.org/W2322402661, https://openalex.org/W2389079374, https://openalex.org/W2372429262, https://openalex.org/W2903653170, https://openalex.org/W2892849672, https://openalex.org/W1590161724 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202409.1639.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202409.1639.v1 |
| primary_location.id | doi:10.20944/preprints202409.1639.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202409.1639.v1 |
| publication_date | 2024-09-21 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 18, 33, 55, 107, 116, 131 |
| abstract_inverted_index.3D | 75 |
| abstract_inverted_index.In | 28 |
| abstract_inverted_index.be | 9 |
| abstract_inverted_index.in | 2, 149 |
| abstract_inverted_index.is | 68 |
| abstract_inverted_index.of | 21, 49, 58, 94, 109 |
| abstract_inverted_index.on | 39 |
| abstract_inverted_index.to | 8, 23, 87, 91, 122, 136 |
| abstract_inverted_index.up | 90 |
| abstract_inverted_index.we | 31 |
| abstract_inverted_index.Our | 127 |
| abstract_inverted_index.SHM | 36 |
| abstract_inverted_index.The | 66 |
| abstract_inverted_index.and | 12, 47, 97, 115, 124, 133 |
| abstract_inverted_index.for | 43, 147 |
| abstract_inverted_index.ten | 92 |
| abstract_inverted_index.the | 44, 150 |
| abstract_inverted_index.via | 63 |
| abstract_inverted_index.(ML) | 42 |
| abstract_inverted_index.Test | 113 |
| abstract_inverted_index.This | 52 |
| abstract_inverted_index.data | 72, 100 |
| abstract_inverted_index.five | 102 |
| abstract_inverted_index.from | 74, 84, 101 |
| abstract_inverted_index.tend | 7 |
| abstract_inverted_index.they | 15 |
| abstract_inverted_index.this | 29 |
| abstract_inverted_index.were | 104 |
| abstract_inverted_index.with | 89, 144 |
| abstract_inverted_index.(GT), | 114 |
| abstract_inverted_index.(SHM) | 6 |
| abstract_inverted_index.based | 38 |
| abstract_inverted_index.crack | 142 |
| abstract_inverted_index.gauge | 60 |
| abstract_inverted_index.large | 19 |
| abstract_inverted_index.often | 16 |
| abstract_inverted_index.three | 80 |
| abstract_inverted_index.using | 106 |
| abstract_inverted_index.Grubbs | 112 |
| abstract_inverted_index.Health | 4 |
| abstract_inverted_index.Strain | 99 |
| abstract_inverted_index.assess | 25 |
| abstract_inverted_index.carbon | 76 |
| abstract_inverted_index.cracks | 93 |
| abstract_inverted_index.linked | 62 |
| abstract_inverted_index.novel, | 34 |
| abstract_inverted_index.number | 20, 57 |
| abstract_inverted_index.offers | 130 |
| abstract_inverted_index.strain | 59 |
| abstract_inverted_index.study, | 30 |
| abstract_inverted_index.charts, | 111 |
| abstract_inverted_index.cracks. | 51 |
| abstract_inverted_index.depths. | 98 |
| abstract_inverted_index.lengths | 96 |
| abstract_inverted_index.machine | 40 |
| abstract_inverted_index.minimal | 56 |
| abstract_inverted_index.precise | 141 |
| abstract_inverted_index.present | 32 |
| abstract_inverted_index.ranging | 83 |
| abstract_inverted_index.require | 17 |
| abstract_inverted_index.samples | 86 |
| abstract_inverted_index.sensors | 22, 61, 103 |
| abstract_inverted_index.through | 70 |
| abstract_inverted_index.varying | 95 |
| abstract_inverted_index.ML-based | 128 |
| abstract_inverted_index.Shewhart | 110 |
| abstract_inverted_index.accurate | 45 |
| abstract_inverted_index.analyzed | 105 |
| abstract_inverted_index.approach | 53 |
| abstract_inverted_index.classify | 125 |
| abstract_inverted_index.complex, | 10 |
| abstract_inverted_index.designed | 121 |
| abstract_inverted_index.distinct | 81 |
| abstract_inverted_index.evaluate | 123 |
| abstract_inverted_index.learning | 41 |
| abstract_inverted_index.Bluetooth | 64 |
| abstract_inverted_index.collected | 73 |
| abstract_inverted_index.detection | 46, 143 |
| abstract_inverted_index.efficient | 134 |
| abstract_inverted_index.empirical | 71 |
| abstract_inverted_index.framework | 37, 67, 129 |
| abstract_inverted_index.including | 79 |
| abstract_inverted_index.industry. | 152 |
| abstract_inverted_index.leverages | 54 |
| abstract_inverted_index.potential | 146 |
| abstract_inverted_index.specimens | 88 |
| abstract_inverted_index.validated | 69 |
| abstract_inverted_index.Monitoring | 5 |
| abstract_inverted_index.Structural | 3 |
| abstract_inverted_index.algorithm, | 119 |
| abstract_inverted_index.approaches | 1 |
| abstract_inverted_index.clustering | 118 |
| abstract_inverted_index.composites | 151 |
| abstract_inverted_index.crack-free | 85 |
| abstract_inverted_index.delivering | 140 |
| abstract_inverted_index.fractures. | 126 |
| abstract_inverted_index.integrity. | 27 |
| abstract_inverted_index.laboratory | 138 |
| abstract_inverted_index.specimens, | 82 |
| abstract_inverted_index.structural | 26, 50 |
| abstract_inverted_index.thoroughly | 24 |
| abstract_inverted_index.alternative | 135 |
| abstract_inverted_index.combination | 108 |
| abstract_inverted_index.composites, | 78 |
| abstract_inverted_index.procedures, | 139 |
| abstract_inverted_index.significant | 145 |
| abstract_inverted_index.streamlined | 132 |
| abstract_inverted_index.traditional | 137 |
| abstract_inverted_index.Conventional | 0 |
| abstract_inverted_index.applications | 148 |
| abstract_inverted_index.destructive, | 11 |
| abstract_inverted_index.hierarchical | 117 |
| abstract_inverted_index.localization | 48 |
| abstract_inverted_index.specifically | 120 |
| abstract_inverted_index.Additionally, | 14 |
| abstract_inverted_index.communication. | 65 |
| abstract_inverted_index.non-destructive | 35 |
| abstract_inverted_index.time-intensive. | 13 |
| abstract_inverted_index.fiber-reinforced | 77 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.598187 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |