Machine learning benchmark for flow reconstruction in the TCC–III optical engine Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1177/14680874251330354
We present EngineBench, the first machine learning (ML) benchmark designed for engine in-cylinder flow research. The benchmark data consist of curated particle image velocimetry (PIV) measurements previously gathered from the Transparent Combustion Chamber (TCC-III) by the General Motors University of Michigan Automotive Cooperative Research Laboratory. 1 The dataset is then leveraged in order to benchmark the performance of four ML methods for a flow reconstruction (inpainting) task. We propose large gaps at the edges of the field of view as the benchmark task in order to reflect realistic scenarios in which data are harder to obtain closer to walls, and to challenge the ability of the models to predict the turbulent flow motion with limited access to surrounding data points. Pixel-wise, vector-based and multi-scale performance metrics are used to provide broad evaluations of the models. We find that models which utilise skip connections show significantly improved performances at this task on both small and large gap sizes, due to their enhanced ability to leverage contextual information. The benchmark proposed in this paper supports the development of ML models for engine design problems, as well as PIV data enhancement more generally. In addition, the ML model comparisons allow for more informed selection of models for problems in experimental flow diagnostics. All data and code are publicly available at https://eng.ox.ac.uk/tpsrg/research/enginebench /.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1177/14680874251330354
- OA Status
- hybrid
- References
- 88
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409993715
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409993715Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1177/14680874251330354Digital Object Identifier
- Title
-
Machine learning benchmark for flow reconstruction in the TCC–III optical engineWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-01Full publication date if available
- Authors
-
S. J. Baker, Michael Hobley, Isabel Scherl, Xiaohang Fang, Felix Leach, Martin DavyList of authors in order
- Landing page
-
https://doi.org/10.1177/14680874251330354Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1177/14680874251330354Direct OA link when available
- Concepts
-
Benchmark (surveying), Computer science, Flow (mathematics), Artificial intelligence, Automotive engineering, Engineering, Physics, Mechanics, Geology, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
88Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409993715 |
|---|---|
| doi | https://doi.org/10.1177/14680874251330354 |
| ids.doi | https://doi.org/10.1177/14680874251330354 |
| ids.openalex | https://openalex.org/W4409993715 |
| fwci | 0.0 |
| type | article |
| title | Machine learning benchmark for flow reconstruction in the TCC–III optical engine |
| awards[0].id | https://openalex.org/G8333526400 |
| awards[0].funder_id | https://openalex.org/F4320334627 |
| awards[0].display_name | |
| awards[0].funder_award_id | EP/T518232/1 |
| awards[0].funder_display_name | Engineering and Physical Sciences Research Council |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10553 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9944999814033508 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Combustion and flame dynamics |
| topics[1].id | https://openalex.org/T10360 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9941999912261963 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Fluid Dynamics and Turbulent Flows |
| topics[2].id | https://openalex.org/T10117 |
| topics[2].field.id | https://openalex.org/fields/15 |
| topics[2].field.display_name | Chemical Engineering |
| topics[2].score | 0.989799976348877 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1507 |
| topics[2].subfield.display_name | Fluid Flow and Transfer Processes |
| topics[2].display_name | Advanced Combustion Engine Technologies |
| funders[0].id | https://openalex.org/F4320334627 |
| funders[0].ror | https://ror.org/0439y7842 |
| funders[0].display_name | Engineering and Physical Sciences Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185798385 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6181075572967529 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[0].display_name | Benchmark (surveying) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4889599084854126 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C38349280 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4429033398628235 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[2].display_name | Flow (mathematics) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.37980353832244873 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C171146098 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3543553948402405 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q124192 |
| concepts[4].display_name | Automotive engineering |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3036404848098755 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.22389498353004456 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C57879066 |
| concepts[7].level | 1 |
| concepts[7].score | 0.201750248670578 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q41217 |
| concepts[7].display_name | Mechanics |
| concepts[8].id | https://openalex.org/C127313418 |
| concepts[8].level | 0 |
| concepts[8].score | 0.19535034894943237 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[8].display_name | Geology |
| concepts[9].id | https://openalex.org/C13280743 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[9].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/benchmark |
| keywords[0].score | 0.6181075572967529 |
| keywords[0].display_name | Benchmark (surveying) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4889599084854126 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/flow |
| keywords[2].score | 0.4429033398628235 |
| keywords[2].display_name | Flow (mathematics) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.37980353832244873 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/automotive-engineering |
| keywords[4].score | 0.3543553948402405 |
| keywords[4].display_name | Automotive engineering |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.3036404848098755 |
| keywords[5].display_name | Engineering |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.22389498353004456 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/mechanics |
| keywords[7].score | 0.201750248670578 |
| keywords[7].display_name | Mechanics |
| keywords[8].id | https://openalex.org/keywords/geology |
| keywords[8].score | 0.19535034894943237 |
| keywords[8].display_name | Geology |
| language | en |
| locations[0].id | doi:10.1177/14680874251330354 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S53651343 |
| locations[0].source.issn | 1468-0874, 2041-3149 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1468-0874 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Engine Research |
| locations[0].source.host_organization | https://openalex.org/P4310320017 |
| locations[0].source.host_organization_name | SAGE Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320017 |
| locations[0].source.host_organization_lineage_names | SAGE Publishing |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Engine Research |
| locations[0].landing_page_url | https://doi.org/10.1177/14680874251330354 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5090756526 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4470-2122 |
| authorships[0].author.display_name | S. J. Baker |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Engineering Science, University of Oxford, Oxford, UK |
| authorships[0].institutions[0].id | https://openalex.org/I40120149 |
| authorships[0].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Oxford |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Samuel Baker |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Engineering Science, University of Oxford, Oxford, UK |
| authorships[1].author.id | https://openalex.org/A5057314680 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Michael Hobley |
| authorships[1].countries | GB, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Engineering Science, University of Oxford, Oxford, UK |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I122411786 |
| authorships[1].affiliations[1].raw_affiliation_string | California Institute of Technology, Pasadena, CA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I40120149 |
| authorships[1].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Oxford |
| authorships[1].institutions[1].id | https://openalex.org/I122411786 |
| authorships[1].institutions[1].ror | https://ror.org/05dxps055 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I122411786 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | California Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michael Hobley |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | California Institute of Technology, Pasadena, CA, USA, Department of Engineering Science, University of Oxford, Oxford, UK |
| authorships[2].author.id | https://openalex.org/A5008384567 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0781-8863 |
| authorships[2].author.display_name | Isabel Scherl |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I122411786 |
| authorships[2].affiliations[0].raw_affiliation_string | California Institute of Technology, Pasadena, CA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I122411786 |
| authorships[2].institutions[0].ror | https://ror.org/05dxps055 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I122411786 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | California Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Isabel Scherl |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | California Institute of Technology, Pasadena, CA, USA |
| authorships[3].author.id | https://openalex.org/A5079435089 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6360-9065 |
| authorships[3].author.display_name | Xiaohang Fang |
| authorships[3].countries | CA, GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Engineering Science, University of Oxford, Oxford, UK |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I168635309 |
| authorships[3].affiliations[1].raw_affiliation_string | Schulich School of Engineering, University of Calgary, Calgary, AB, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I168635309 |
| authorships[3].institutions[0].ror | https://ror.org/03yjb2x39 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I168635309 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | University of Calgary |
| authorships[3].institutions[1].id | https://openalex.org/I40120149 |
| authorships[3].institutions[1].ror | https://ror.org/052gg0110 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I40120149 |
| authorships[3].institutions[1].country_code | GB |
| authorships[3].institutions[1].display_name | University of Oxford |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | XiaoHang Fang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Engineering Science, University of Oxford, Oxford, UK, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada |
| authorships[4].author.id | https://openalex.org/A5001326020 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6656-2389 |
| authorships[4].author.display_name | Felix Leach |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Engineering Science, University of Oxford, Oxford, UK |
| authorships[4].institutions[0].id | https://openalex.org/I40120149 |
| authorships[4].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University of Oxford |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Felix Leach |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Engineering Science, University of Oxford, Oxford, UK |
| authorships[5].author.id | https://openalex.org/A5055640198 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7866-9028 |
| authorships[5].author.display_name | Martin Davy |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Engineering Science, University of Oxford, Oxford, UK |
| authorships[5].institutions[0].id | https://openalex.org/I40120149 |
| authorships[5].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | University of Oxford |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Martin Davy |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Engineering Science, University of Oxford, Oxford, UK |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1177/14680874251330354 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine learning benchmark for flow reconstruction in the TCC–III optical engine |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10553 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9944999814033508 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Combustion and flame dynamics |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W4321353415, https://openalex.org/W2745001401, https://openalex.org/W2130974462, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W4246352526, https://openalex.org/W2121910908, https://openalex.org/W915438175, https://openalex.org/W2358190750 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1177/14680874251330354 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S53651343 |
| best_oa_location.source.issn | 1468-0874, 2041-3149 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1468-0874 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Engine Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310320017 |
| best_oa_location.source.host_organization_name | SAGE Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320017 |
| best_oa_location.source.host_organization_lineage_names | SAGE Publishing |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Engine Research |
| best_oa_location.landing_page_url | https://doi.org/10.1177/14680874251330354 |
| primary_location.id | doi:10.1177/14680874251330354 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S53651343 |
| primary_location.source.issn | 1468-0874, 2041-3149 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1468-0874 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Engine Research |
| primary_location.source.host_organization | https://openalex.org/P4310320017 |
| primary_location.source.host_organization_name | SAGE Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320017 |
| primary_location.source.host_organization_lineage_names | SAGE Publishing |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Engine Research |
| primary_location.landing_page_url | https://doi.org/10.1177/14680874251330354 |
| publication_date | 2025-05-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1866893013, https://openalex.org/W6620841282, https://openalex.org/W2132858909, https://openalex.org/W2345821708, https://openalex.org/W6602535734, https://openalex.org/W2990389399, https://openalex.org/W3214644382, https://openalex.org/W2756371990, https://openalex.org/W3032072573, https://openalex.org/W2143067558, https://openalex.org/W3014668091, https://openalex.org/W6602536545, https://openalex.org/W3090070661, https://openalex.org/W3081456333, https://openalex.org/W2070117655, https://openalex.org/W4320497786, https://openalex.org/W3203806521, https://openalex.org/W3017770080, https://openalex.org/W2120101088, https://openalex.org/W2123473837, https://openalex.org/W2033106141, https://openalex.org/W2472449998, https://openalex.org/W4317802036, https://openalex.org/W2987245967, https://openalex.org/W4391805917, https://openalex.org/W2963448313, https://openalex.org/W2959070986, https://openalex.org/W2056128818, https://openalex.org/W2992838650, https://openalex.org/W3102846047, https://openalex.org/W3121951452, https://openalex.org/W4383472615, https://openalex.org/W2801938748, https://openalex.org/W3023076955, https://openalex.org/W4388514520, https://openalex.org/W4379057603, https://openalex.org/W4378591428, https://openalex.org/W4313372440, https://openalex.org/W4308609839, https://openalex.org/W6746034047, https://openalex.org/W4319311154, https://openalex.org/W4367841032, https://openalex.org/W4385989222, https://openalex.org/W4313214280, https://openalex.org/W3045549273, https://openalex.org/W4386688229, https://openalex.org/W2899283552, https://openalex.org/W3197732874, https://openalex.org/W3185095713, https://openalex.org/W3080930191, https://openalex.org/W4210729890, https://openalex.org/W2136211190, https://openalex.org/W59825180, https://openalex.org/W4385636475, https://openalex.org/W3035733053, https://openalex.org/W2163605009, https://openalex.org/W2108598243, https://openalex.org/W1974991834, https://openalex.org/W4387120988, https://openalex.org/W3203927773, https://openalex.org/W4304207712, https://openalex.org/W1986646241, https://openalex.org/W2167604734, https://openalex.org/W3040839059, https://openalex.org/W2114103730, https://openalex.org/W2325871378, https://openalex.org/W2518981050, https://openalex.org/W2032548320, https://openalex.org/W4212875960, https://openalex.org/W2963420272, https://openalex.org/W3175375202, https://openalex.org/W2284773405, https://openalex.org/W3209909540, https://openalex.org/W2926477527, https://openalex.org/W4375861312, https://openalex.org/W4296899985, https://openalex.org/W2976192072, https://openalex.org/W4386122808, https://openalex.org/W61584478, https://openalex.org/W3105938520, https://openalex.org/W3183476775, https://openalex.org/W641517383, https://openalex.org/W3120515765, https://openalex.org/W3085975047, https://openalex.org/W4286988446, https://openalex.org/W3022731380, https://openalex.org/W3104099416, https://openalex.org/W3114871366 |
| referenced_works_count | 88 |
| abstract_inverted_index.1 | 45 |
| abstract_inverted_index.a | 62 |
| abstract_inverted_index./. | 218 |
| abstract_inverted_index.In | 190 |
| abstract_inverted_index.ML | 59, 176, 193 |
| abstract_inverted_index.We | 0, 67, 135 |
| abstract_inverted_index.as | 79, 182, 184 |
| abstract_inverted_index.at | 71, 147, 216 |
| abstract_inverted_index.by | 34 |
| abstract_inverted_index.in | 51, 83, 89, 169, 205 |
| abstract_inverted_index.is | 48 |
| abstract_inverted_index.of | 19, 39, 57, 74, 77, 104, 132, 175, 201 |
| abstract_inverted_index.on | 150 |
| abstract_inverted_index.to | 53, 85, 94, 97, 100, 107, 116, 128, 158, 162 |
| abstract_inverted_index.All | 209 |
| abstract_inverted_index.PIV | 185 |
| abstract_inverted_index.The | 15, 46, 166 |
| abstract_inverted_index.and | 99, 122, 153, 211 |
| abstract_inverted_index.are | 92, 126, 213 |
| abstract_inverted_index.due | 157 |
| abstract_inverted_index.for | 10, 61, 178, 197, 203 |
| abstract_inverted_index.gap | 155 |
| abstract_inverted_index.the | 3, 29, 35, 55, 72, 75, 80, 102, 105, 109, 133, 173, 192 |
| abstract_inverted_index.(ML) | 7 |
| abstract_inverted_index.both | 151 |
| abstract_inverted_index.code | 212 |
| abstract_inverted_index.data | 17, 91, 118, 186, 210 |
| abstract_inverted_index.find | 136 |
| abstract_inverted_index.flow | 13, 63, 111, 207 |
| abstract_inverted_index.four | 58 |
| abstract_inverted_index.from | 28 |
| abstract_inverted_index.gaps | 70 |
| abstract_inverted_index.more | 188, 198 |
| abstract_inverted_index.show | 143 |
| abstract_inverted_index.skip | 141 |
| abstract_inverted_index.task | 82, 149 |
| abstract_inverted_index.that | 137 |
| abstract_inverted_index.then | 49 |
| abstract_inverted_index.this | 148, 170 |
| abstract_inverted_index.used | 127 |
| abstract_inverted_index.view | 78 |
| abstract_inverted_index.well | 183 |
| abstract_inverted_index.with | 113 |
| abstract_inverted_index.(PIV) | 24 |
| abstract_inverted_index.allow | 196 |
| abstract_inverted_index.broad | 130 |
| abstract_inverted_index.edges | 73 |
| abstract_inverted_index.field | 76 |
| abstract_inverted_index.first | 4 |
| abstract_inverted_index.image | 22 |
| abstract_inverted_index.large | 69, 154 |
| abstract_inverted_index.model | 194 |
| abstract_inverted_index.order | 52, 84 |
| abstract_inverted_index.paper | 171 |
| abstract_inverted_index.small | 152 |
| abstract_inverted_index.task. | 66 |
| abstract_inverted_index.their | 159 |
| abstract_inverted_index.which | 90, 139 |
| abstract_inverted_index.Motors | 37 |
| abstract_inverted_index.access | 115 |
| abstract_inverted_index.closer | 96 |
| abstract_inverted_index.design | 180 |
| abstract_inverted_index.engine | 11, 179 |
| abstract_inverted_index.harder | 93 |
| abstract_inverted_index.models | 106, 138, 177, 202 |
| abstract_inverted_index.motion | 112 |
| abstract_inverted_index.obtain | 95 |
| abstract_inverted_index.sizes, | 156 |
| abstract_inverted_index.walls, | 98 |
| abstract_inverted_index.Chamber | 32 |
| abstract_inverted_index.General | 36 |
| abstract_inverted_index.ability | 103, 161 |
| abstract_inverted_index.consist | 18 |
| abstract_inverted_index.curated | 20 |
| abstract_inverted_index.dataset | 47 |
| abstract_inverted_index.limited | 114 |
| abstract_inverted_index.machine | 5 |
| abstract_inverted_index.methods | 60 |
| abstract_inverted_index.metrics | 125 |
| abstract_inverted_index.models. | 134 |
| abstract_inverted_index.points. | 119 |
| abstract_inverted_index.predict | 108 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.propose | 68 |
| abstract_inverted_index.provide | 129 |
| abstract_inverted_index.reflect | 86 |
| abstract_inverted_index.utilise | 140 |
| abstract_inverted_index.Michigan | 40 |
| abstract_inverted_index.Research | 43 |
| abstract_inverted_index.designed | 9 |
| abstract_inverted_index.enhanced | 160 |
| abstract_inverted_index.gathered | 27 |
| abstract_inverted_index.improved | 145 |
| abstract_inverted_index.informed | 199 |
| abstract_inverted_index.learning | 6 |
| abstract_inverted_index.leverage | 163 |
| abstract_inverted_index.particle | 21 |
| abstract_inverted_index.problems | 204 |
| abstract_inverted_index.proposed | 168 |
| abstract_inverted_index.publicly | 214 |
| abstract_inverted_index.supports | 172 |
| abstract_inverted_index.(TCC-III) | 33 |
| abstract_inverted_index.addition, | 191 |
| abstract_inverted_index.available | 215 |
| abstract_inverted_index.benchmark | 8, 16, 54, 81, 167 |
| abstract_inverted_index.challenge | 101 |
| abstract_inverted_index.leveraged | 50 |
| abstract_inverted_index.problems, | 181 |
| abstract_inverted_index.realistic | 87 |
| abstract_inverted_index.research. | 14 |
| abstract_inverted_index.scenarios | 88 |
| abstract_inverted_index.selection | 200 |
| abstract_inverted_index.turbulent | 110 |
| abstract_inverted_index.Automotive | 41 |
| abstract_inverted_index.Combustion | 31 |
| abstract_inverted_index.University | 38 |
| abstract_inverted_index.contextual | 164 |
| abstract_inverted_index.generally. | 189 |
| abstract_inverted_index.previously | 26 |
| abstract_inverted_index.Cooperative | 42 |
| abstract_inverted_index.Laboratory. | 44 |
| abstract_inverted_index.Pixel-wise, | 120 |
| abstract_inverted_index.Transparent | 30 |
| abstract_inverted_index.comparisons | 195 |
| abstract_inverted_index.connections | 142 |
| abstract_inverted_index.development | 174 |
| abstract_inverted_index.enhancement | 187 |
| abstract_inverted_index.evaluations | 131 |
| abstract_inverted_index.in-cylinder | 12 |
| abstract_inverted_index.multi-scale | 123 |
| abstract_inverted_index.performance | 56, 124 |
| abstract_inverted_index.surrounding | 117 |
| abstract_inverted_index.velocimetry | 23 |
| abstract_inverted_index.(inpainting) | 65 |
| abstract_inverted_index.EngineBench, | 2 |
| abstract_inverted_index.diagnostics. | 208 |
| abstract_inverted_index.experimental | 206 |
| abstract_inverted_index.information. | 165 |
| abstract_inverted_index.measurements | 25 |
| abstract_inverted_index.performances | 146 |
| abstract_inverted_index.vector-based | 121 |
| abstract_inverted_index.significantly | 144 |
| abstract_inverted_index.reconstruction | 64 |
| abstract_inverted_index.https://eng.ox.ac.uk/tpsrg/research/enginebench | 217 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.16886957 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |