Machine Learning Empowered Security Management and Quality of Service Provision in SDN-NFV Environment Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.32604/cmc.2021.014594
With the rising demand for data access, network service providers face the challenge of growing their capital and operating costs while at the same time enhancing network capacity and meeting the increased demand for access. To increase efficacy of Software Defined Network (SDN) and Network Function Virtualization (NFV) framework, we need to eradicate network security configuration errors that may create vulnerabilities to affect overall efficiency, reduce network performance, and increase maintenance cost. The existing frameworks lack in security, and computer systems face few abnormalities, which prompts the need for different recognition and mitigation methods to keep the system in the operational state proactively. The fundamental concept behind SDN-NFV is the encroachment from specific resource execution to the programming-based structure. This research is around the combination of SDN and NFV for rational decision making to control and monitor traffic in the virtualized environment. The combination is often seen as an extra burden in terms of resources usage in a heterogeneous network environment, but as well as it provides the solution for critical problems specially regarding massive network traffic issues. The attacks have been expanding step by step; therefore, it is hard to recognize and protect by conventional methods. To overcome these issues, there must be an autonomous system to recognize and characterize the network traffic’s abnormal conduct if there is any. Only four types of assaults, including HTTP Flood, UDP Flood, Smurf Flood, and SiDDoS Flood, are considered in the identified dataset, to optimize the stability of the SDN-NFV environment and security management, through several machine learning based characterization techniques like Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR) and Isolation Forest (IF). Python is used for simulation purposes, including several valuable utilities like the mine package, the open-source Python ML libraries Scikit-learn, NumPy, SciPy, Matplotlib. Few Flood assaults and Structured Query Language (SQL) injections anomalies are validated and effectively-identified through the anticipated procedure. The classification results are promising and show that overall accuracy lies between 87% to 95% for SVM, LR, KNN, and IF classifiers in the scrutiny of traffic, whether the network traffic is normal or anomalous in the SDN-NFV environment.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.32604/cmc.2021.014594
- https://file.techscience.com/ueditor/files/TSP_CMC_66-3/TSP_CMC_14594/TSP_CMC_14594.pdf
- OA Status
- diamond
- Cited By
- 32
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3118453735
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3118453735Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32604/cmc.2021.014594Digital Object Identifier
- Title
-
Machine Learning Empowered Security Management and Quality of Service Provision in SDN-NFV EnvironmentWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Shumaila Shahzadi, Fahad Ahmad, Asma Basharat, Madallah Alruwaili, Saad Alanazi, Mamoona Humayun, Muhammad Rizwan, Shahid NaseemList of authors in order
- Landing page
-
https://doi.org/10.32604/cmc.2021.014594Publisher landing page
- PDF URL
-
https://file.techscience.com/ueditor/files/TSP_CMC_66-3/TSP_CMC_14594/TSP_CMC_14594.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://file.techscience.com/ueditor/files/TSP_CMC_66-3/TSP_CMC_14594/TSP_CMC_14594.pdfDirect OA link when available
- Concepts
-
Computer science, Computer security, Software-defined networking, Network management, Network security, Virtualization, Cloud computing, Quality of service, Computer network, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
32Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 7, 2023: 5, 2022: 9, 2021: 9Per-year citation counts (last 5 years)
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3118453735 |
|---|---|
| doi | https://doi.org/10.32604/cmc.2021.014594 |
| ids.doi | https://doi.org/10.32604/cmc.2021.014594 |
| ids.mag | 3118453735 |
| ids.openalex | https://openalex.org/W3118453735 |
| fwci | 4.96895268 |
| type | article |
| title | Machine Learning Empowered Security Management and Quality of Service Provision in SDN-NFV Environment |
| biblio.issue | 3 |
| biblio.volume | 66 |
| biblio.last_page | 2749 |
| biblio.first_page | 2723 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T10714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Software-Defined Networks and 5G |
| topics[2].id | https://openalex.org/T11241 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9979000091552734 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Advanced Malware Detection Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7117195725440979 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C38652104 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5487582683563232 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[1].display_name | Computer security |
| concepts[2].id | https://openalex.org/C77270119 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5034849047660828 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1655198 |
| concepts[2].display_name | Software-defined networking |
| concepts[3].id | https://openalex.org/C129763632 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4750423729419708 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1454667 |
| concepts[3].display_name | Network management |
| concepts[4].id | https://openalex.org/C182590292 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4615030884742737 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q989632 |
| concepts[4].display_name | Network security |
| concepts[5].id | https://openalex.org/C513985346 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4500182867050171 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q270471 |
| concepts[5].display_name | Virtualization |
| concepts[6].id | https://openalex.org/C79974875 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42570921778678894 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[6].display_name | Cloud computing |
| concepts[7].id | https://openalex.org/C5119721 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42152321338653564 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q220501 |
| concepts[7].display_name | Quality of service |
| concepts[8].id | https://openalex.org/C31258907 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3489484190940857 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[8].display_name | Computer network |
| concepts[9].id | https://openalex.org/C111919701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0984748899936676 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[9].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7117195725440979 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/computer-security |
| keywords[1].score | 0.5487582683563232 |
| keywords[1].display_name | Computer security |
| keywords[2].id | https://openalex.org/keywords/software-defined-networking |
| keywords[2].score | 0.5034849047660828 |
| keywords[2].display_name | Software-defined networking |
| keywords[3].id | https://openalex.org/keywords/network-management |
| keywords[3].score | 0.4750423729419708 |
| keywords[3].display_name | Network management |
| keywords[4].id | https://openalex.org/keywords/network-security |
| keywords[4].score | 0.4615030884742737 |
| keywords[4].display_name | Network security |
| keywords[5].id | https://openalex.org/keywords/virtualization |
| keywords[5].score | 0.4500182867050171 |
| keywords[5].display_name | Virtualization |
| keywords[6].id | https://openalex.org/keywords/cloud-computing |
| keywords[6].score | 0.42570921778678894 |
| keywords[6].display_name | Cloud computing |
| keywords[7].id | https://openalex.org/keywords/quality-of-service |
| keywords[7].score | 0.42152321338653564 |
| keywords[7].display_name | Quality of service |
| keywords[8].id | https://openalex.org/keywords/computer-network |
| keywords[8].score | 0.3489484190940857 |
| keywords[8].display_name | Computer network |
| keywords[9].id | https://openalex.org/keywords/operating-system |
| keywords[9].score | 0.0984748899936676 |
| keywords[9].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.32604/cmc.2021.014594 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191605 |
| locations[0].source.issn | 1546-2218, 1546-2226 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1546-2218 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://file.techscience.com/ueditor/files/TSP_CMC_66-3/TSP_CMC_14594/TSP_CMC_14594.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computers, Materials & Continua |
| locations[0].landing_page_url | https://doi.org/10.32604/cmc.2021.014594 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5064946691 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shumaila Shahzadi |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I148520331 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Sciences, Kinnaird College for Women, Lahore, 54000, Pakistan |
| authorships[0].institutions[0].id | https://openalex.org/I148520331 |
| authorships[0].institutions[0].ror | https://ror.org/02dpvst32 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I148520331 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | Kinnaird College for Women University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shumaila Shahzadi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Sciences, Kinnaird College for Women, Lahore, 54000, Pakistan |
| authorships[1].author.id | https://openalex.org/A5082292122 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5269-0427 |
| authorships[1].author.display_name | Fahad Ahmad |
| authorships[1].countries | PK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I148520331 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Sciences, Kinnaird College for Women, Lahore, 54000, Pakistan |
| authorships[1].institutions[0].id | https://openalex.org/I148520331 |
| authorships[1].institutions[0].ror | https://ror.org/02dpvst32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I148520331 |
| authorships[1].institutions[0].country_code | PK |
| authorships[1].institutions[0].display_name | Kinnaird College for Women University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fahad Ahmad |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Computer Sciences, Kinnaird College for Women, Lahore, 54000, Pakistan |
| authorships[2].author.id | https://openalex.org/A5065098422 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Asma Basharat |
| authorships[2].countries | PK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I148520331 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Sciences, Kinnaird College for Women, Lahore, 54000, Pakistan |
| authorships[2].institutions[0].id | https://openalex.org/I148520331 |
| authorships[2].institutions[0].ror | https://ror.org/02dpvst32 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I148520331 |
| authorships[2].institutions[0].country_code | PK |
| authorships[2].institutions[0].display_name | Kinnaird College for Women University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Asma Basharat |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Sciences, Kinnaird College for Women, Lahore, 54000, Pakistan |
| authorships[3].author.id | https://openalex.org/A5065276883 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5198-5730 |
| authorships[3].author.display_name | Madallah Alruwaili |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I199702508 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Computer and Information Sciences, Jouf University, Sakaka, 72341, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I199702508 |
| authorships[3].institutions[0].ror | https://ror.org/02zsyt821 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I199702508 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | Jouf University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Madallah Alruwaili |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Computer and Information Sciences, Jouf University, Sakaka, 72341, Saudi Arabia |
| authorships[4].author.id | https://openalex.org/A5087313412 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1714-1948 |
| authorships[4].author.display_name | Saad Alanazi |
| authorships[4].countries | SA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I199702508 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Computer and Information Sciences, Jouf University, Sakaka, 72341, Saudi Arabia |
| authorships[4].institutions[0].id | https://openalex.org/I199702508 |
| authorships[4].institutions[0].ror | https://ror.org/02zsyt821 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I199702508 |
| authorships[4].institutions[0].country_code | SA |
| authorships[4].institutions[0].display_name | Jouf University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Saad Alanazi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Computer and Information Sciences, Jouf University, Sakaka, 72341, Saudi Arabia |
| authorships[5].author.id | https://openalex.org/A5027472030 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6339-2257 |
| authorships[5].author.display_name | Mamoona Humayun |
| authorships[5].countries | SA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I199702508 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Computer and Information Sciences, Jouf University, Sakaka, 72341, Saudi Arabia |
| authorships[5].institutions[0].id | https://openalex.org/I199702508 |
| authorships[5].institutions[0].ror | https://ror.org/02zsyt821 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I199702508 |
| authorships[5].institutions[0].country_code | SA |
| authorships[5].institutions[0].display_name | Jouf University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Mamoona Humayun |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Computer and Information Sciences, Jouf University, Sakaka, 72341, Saudi Arabia |
| authorships[6].author.id | https://openalex.org/A5024733719 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4408-4934 |
| authorships[6].author.display_name | Muhammad Rizwan |
| authorships[6].countries | PK |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I148520331 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Computer Sciences, Kinnaird College for Women, Lahore, 54000, Pakistan |
| authorships[6].institutions[0].id | https://openalex.org/I148520331 |
| authorships[6].institutions[0].ror | https://ror.org/02dpvst32 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I148520331 |
| authorships[6].institutions[0].country_code | PK |
| authorships[6].institutions[0].display_name | Kinnaird College for Women University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Muhammad Rizwan |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Computer Sciences, Kinnaird College for Women, Lahore, 54000, Pakistan |
| authorships[7].author.id | https://openalex.org/A5003316065 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0791-541X |
| authorships[7].author.display_name | Shahid Naseem |
| authorships[7].countries | PK |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I1323252656, https://openalex.org/I3130814776, https://openalex.org/I5100685 |
| authorships[7].affiliations[0].raw_affiliation_string | Division of Computer Science & Information Technology, University of Education, Lahore, 54000, Pakistan |
| authorships[7].institutions[0].id | https://openalex.org/I1323252656 |
| authorships[7].institutions[0].ror | https://ror.org/00ngv8j44 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I1323252656 |
| authorships[7].institutions[0].country_code | PK |
| authorships[7].institutions[0].display_name | Information Technology University |
| authorships[7].institutions[1].id | https://openalex.org/I5100685 |
| authorships[7].institutions[1].ror | https://ror.org/052z7nw84 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I5100685 |
| authorships[7].institutions[1].country_code | PK |
| authorships[7].institutions[1].display_name | University of Education |
| authorships[7].institutions[2].id | https://openalex.org/I3130814776 |
| authorships[7].institutions[2].ror | https://ror.org/02fmg6q11 |
| authorships[7].institutions[2].type | education |
| authorships[7].institutions[2].lineage | https://openalex.org/I3130814776 |
| authorships[7].institutions[2].country_code | PK |
| authorships[7].institutions[2].display_name | University of Okara |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Shahid Naseem |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Division of Computer Science & Information Technology, University of Education, Lahore, 54000, Pakistan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://file.techscience.com/ueditor/files/TSP_CMC_66-3/TSP_CMC_14594/TSP_CMC_14594.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine Learning Empowered Security Management and Quality of Service Provision in SDN-NFV Environment |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W3169265188, https://openalex.org/W2267484144, https://openalex.org/W1907653724, https://openalex.org/W2554427106, https://openalex.org/W2560178266, https://openalex.org/W2079417790, https://openalex.org/W58944773, https://openalex.org/W2794617229, https://openalex.org/W2793291865, https://openalex.org/W2068548071 |
| cited_by_count | 32 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 9 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 9 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32604/cmc.2021.014594 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191605 |
| best_oa_location.source.issn | 1546-2218, 1546-2226 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1546-2218 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://file.techscience.com/ueditor/files/TSP_CMC_66-3/TSP_CMC_14594/TSP_CMC_14594.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computers, Materials & Continua |
| best_oa_location.landing_page_url | https://doi.org/10.32604/cmc.2021.014594 |
| primary_location.id | doi:10.32604/cmc.2021.014594 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191605 |
| primary_location.source.issn | 1546-2218, 1546-2226 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1546-2218 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://file.techscience.com/ueditor/files/TSP_CMC_66-3/TSP_CMC_14594/TSP_CMC_14594.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computers, Materials & Continua |
| primary_location.landing_page_url | https://doi.org/10.32604/cmc.2021.014594 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W6753662786, https://openalex.org/W2995929192, https://openalex.org/W6779835881, https://openalex.org/W2997502438, https://openalex.org/W2793369663, https://openalex.org/W2911505293, https://openalex.org/W3027378420, https://openalex.org/W3008633756, https://openalex.org/W2944664390, https://openalex.org/W3006006160, https://openalex.org/W2894004150, https://openalex.org/W6756070103, https://openalex.org/W2604420083, https://openalex.org/W3026477862, https://openalex.org/W2965207653, https://openalex.org/W2912511122, https://openalex.org/W6745286031, https://openalex.org/W6771747505, https://openalex.org/W3016172990, https://openalex.org/W3034315788, https://openalex.org/W6732822748, https://openalex.org/W6767995085, https://openalex.org/W2783034914, https://openalex.org/W3007603295, https://openalex.org/W6754016024, https://openalex.org/W2932863248, https://openalex.org/W6737469415, https://openalex.org/W2913817402, https://openalex.org/W2963936979, https://openalex.org/W6769697328, https://openalex.org/W2958285686, https://openalex.org/W6773271220, https://openalex.org/W6753422612, https://openalex.org/W6774463498, https://openalex.org/W3016974523, https://openalex.org/W2929786138, https://openalex.org/W2997469101, https://openalex.org/W2984942373, https://openalex.org/W2974335833, https://openalex.org/W3009787393, https://openalex.org/W2580906503, https://openalex.org/W2886055236, https://openalex.org/W2899717508, https://openalex.org/W3000962243 |
| referenced_works_count | 44 |
| abstract_inverted_index.a | 157 |
| abstract_inverted_index.IF | 335 |
| abstract_inverted_index.ML | 291 |
| abstract_inverted_index.To | 35, 197 |
| abstract_inverted_index.an | 148, 204 |
| abstract_inverted_index.as | 147, 162, 164 |
| abstract_inverted_index.at | 21 |
| abstract_inverted_index.be | 203 |
| abstract_inverted_index.by | 184, 194 |
| abstract_inverted_index.if | 216 |
| abstract_inverted_index.in | 76, 98, 138, 151, 156, 237, 337, 350 |
| abstract_inverted_index.is | 108, 121, 144, 188, 218, 275, 346 |
| abstract_inverted_index.it | 165, 187 |
| abstract_inverted_index.of | 13, 38, 125, 153, 223, 245, 340 |
| abstract_inverted_index.or | 348 |
| abstract_inverted_index.to | 51, 61, 94, 115, 133, 190, 207, 241, 328 |
| abstract_inverted_index.we | 49 |
| abstract_inverted_index.87% | 327 |
| abstract_inverted_index.95% | 329 |
| abstract_inverted_index.Few | 297 |
| abstract_inverted_index.LR, | 332 |
| abstract_inverted_index.NFV | 128 |
| abstract_inverted_index.SDN | 126 |
| abstract_inverted_index.The | 72, 103, 142, 178, 315 |
| abstract_inverted_index.UDP | 228 |
| abstract_inverted_index.and | 17, 28, 43, 68, 78, 91, 127, 135, 192, 209, 232, 249, 270, 300, 309, 320, 334 |
| abstract_inverted_index.are | 235, 307, 318 |
| abstract_inverted_index.but | 161 |
| abstract_inverted_index.few | 82 |
| abstract_inverted_index.for | 4, 33, 88, 129, 169, 277, 330 |
| abstract_inverted_index.may | 58 |
| abstract_inverted_index.the | 1, 11, 22, 30, 86, 96, 99, 109, 116, 123, 139, 167, 211, 238, 243, 246, 285, 288, 312, 338, 343, 351 |
| abstract_inverted_index.(LR) | 269 |
| abstract_inverted_index.HTTP | 226 |
| abstract_inverted_index.KNN, | 333 |
| abstract_inverted_index.Only | 220 |
| abstract_inverted_index.SVM, | 331 |
| abstract_inverted_index.This | 119 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.any. | 219 |
| abstract_inverted_index.been | 181 |
| abstract_inverted_index.data | 5 |
| abstract_inverted_index.face | 10, 81 |
| abstract_inverted_index.four | 221 |
| abstract_inverted_index.from | 111 |
| abstract_inverted_index.hard | 189 |
| abstract_inverted_index.have | 180 |
| abstract_inverted_index.keep | 95 |
| abstract_inverted_index.lack | 75 |
| abstract_inverted_index.lies | 325 |
| abstract_inverted_index.like | 259, 284 |
| abstract_inverted_index.mine | 286 |
| abstract_inverted_index.must | 202 |
| abstract_inverted_index.need | 50, 87 |
| abstract_inverted_index.same | 23 |
| abstract_inverted_index.seen | 146 |
| abstract_inverted_index.show | 321 |
| abstract_inverted_index.step | 183 |
| abstract_inverted_index.that | 57, 322 |
| abstract_inverted_index.time | 24 |
| abstract_inverted_index.used | 276 |
| abstract_inverted_index.well | 163 |
| abstract_inverted_index.(IF). | 273 |
| abstract_inverted_index.(NFV) | 47 |
| abstract_inverted_index.(SDN) | 42 |
| abstract_inverted_index.(SQL) | 304 |
| abstract_inverted_index.Flood | 298 |
| abstract_inverted_index.Query | 302 |
| abstract_inverted_index.Smurf | 230 |
| abstract_inverted_index.based | 256 |
| abstract_inverted_index.cost. | 71 |
| abstract_inverted_index.costs | 19 |
| abstract_inverted_index.extra | 149 |
| abstract_inverted_index.often | 145 |
| abstract_inverted_index.state | 101 |
| abstract_inverted_index.step; | 185 |
| abstract_inverted_index.terms | 152 |
| abstract_inverted_index.their | 15 |
| abstract_inverted_index.there | 201, 217 |
| abstract_inverted_index.these | 199 |
| abstract_inverted_index.types | 222 |
| abstract_inverted_index.usage | 155 |
| abstract_inverted_index.which | 84 |
| abstract_inverted_index.while | 20 |
| abstract_inverted_index.(KNN), | 266 |
| abstract_inverted_index.(SVM), | 263 |
| abstract_inverted_index.Flood, | 227, 229, 231, 234 |
| abstract_inverted_index.Forest | 272 |
| abstract_inverted_index.NumPy, | 294 |
| abstract_inverted_index.Python | 274, 290 |
| abstract_inverted_index.SciPy, | 295 |
| abstract_inverted_index.SiDDoS | 233 |
| abstract_inverted_index.Vector | 261 |
| abstract_inverted_index.affect | 62 |
| abstract_inverted_index.around | 122 |
| abstract_inverted_index.behind | 106 |
| abstract_inverted_index.burden | 150 |
| abstract_inverted_index.create | 59 |
| abstract_inverted_index.demand | 3, 32 |
| abstract_inverted_index.errors | 56 |
| abstract_inverted_index.making | 132 |
| abstract_inverted_index.normal | 347 |
| abstract_inverted_index.reduce | 65 |
| abstract_inverted_index.rising | 2 |
| abstract_inverted_index.system | 97, 206 |
| abstract_inverted_index.Defined | 40 |
| abstract_inverted_index.Machine | 262 |
| abstract_inverted_index.Network | 41, 44 |
| abstract_inverted_index.SDN-NFV | 107, 247, 352 |
| abstract_inverted_index.Support | 260 |
| abstract_inverted_index.access, | 6 |
| abstract_inverted_index.access. | 34 |
| abstract_inverted_index.attacks | 179 |
| abstract_inverted_index.between | 326 |
| abstract_inverted_index.capital | 16 |
| abstract_inverted_index.concept | 105 |
| abstract_inverted_index.conduct | 215 |
| abstract_inverted_index.control | 134 |
| abstract_inverted_index.growing | 14 |
| abstract_inverted_index.issues, | 200 |
| abstract_inverted_index.issues. | 177 |
| abstract_inverted_index.machine | 254 |
| abstract_inverted_index.massive | 174 |
| abstract_inverted_index.meeting | 29 |
| abstract_inverted_index.methods | 93 |
| abstract_inverted_index.monitor | 136 |
| abstract_inverted_index.network | 7, 26, 53, 66, 159, 175, 212, 344 |
| abstract_inverted_index.overall | 63, 323 |
| abstract_inverted_index.prompts | 85 |
| abstract_inverted_index.protect | 193 |
| abstract_inverted_index.results | 317 |
| abstract_inverted_index.service | 8 |
| abstract_inverted_index.several | 253, 281 |
| abstract_inverted_index.systems | 80 |
| abstract_inverted_index.through | 252, 311 |
| abstract_inverted_index.traffic | 137, 176, 345 |
| abstract_inverted_index.whether | 342 |
| abstract_inverted_index.Function | 45 |
| abstract_inverted_index.Language | 303 |
| abstract_inverted_index.Logistic | 267 |
| abstract_inverted_index.Software | 39 |
| abstract_inverted_index.abnormal | 214 |
| abstract_inverted_index.accuracy | 324 |
| abstract_inverted_index.assaults | 299 |
| abstract_inverted_index.capacity | 27 |
| abstract_inverted_index.computer | 79 |
| abstract_inverted_index.critical | 170 |
| abstract_inverted_index.dataset, | 240 |
| abstract_inverted_index.decision | 131 |
| abstract_inverted_index.efficacy | 37 |
| abstract_inverted_index.existing | 73 |
| abstract_inverted_index.increase | 36, 69 |
| abstract_inverted_index.learning | 255 |
| abstract_inverted_index.methods. | 196 |
| abstract_inverted_index.optimize | 242 |
| abstract_inverted_index.overcome | 198 |
| abstract_inverted_index.package, | 287 |
| abstract_inverted_index.problems | 171 |
| abstract_inverted_index.provides | 166 |
| abstract_inverted_index.rational | 130 |
| abstract_inverted_index.research | 120 |
| abstract_inverted_index.resource | 113 |
| abstract_inverted_index.scrutiny | 339 |
| abstract_inverted_index.security | 54, 250 |
| abstract_inverted_index.solution | 168 |
| abstract_inverted_index.specific | 112 |
| abstract_inverted_index.traffic, | 341 |
| abstract_inverted_index.valuable | 282 |
| abstract_inverted_index.Isolation | 271 |
| abstract_inverted_index.K-Nearest | 264 |
| abstract_inverted_index.Neighbors | 265 |
| abstract_inverted_index.anomalies | 306 |
| abstract_inverted_index.anomalous | 349 |
| abstract_inverted_index.assaults, | 224 |
| abstract_inverted_index.challenge | 12 |
| abstract_inverted_index.different | 89 |
| abstract_inverted_index.enhancing | 25 |
| abstract_inverted_index.eradicate | 52 |
| abstract_inverted_index.execution | 114 |
| abstract_inverted_index.expanding | 182 |
| abstract_inverted_index.including | 225, 280 |
| abstract_inverted_index.increased | 31 |
| abstract_inverted_index.libraries | 292 |
| abstract_inverted_index.operating | 18 |
| abstract_inverted_index.promising | 319 |
| abstract_inverted_index.providers | 9 |
| abstract_inverted_index.purposes, | 279 |
| abstract_inverted_index.recognize | 191, 208 |
| abstract_inverted_index.regarding | 173 |
| abstract_inverted_index.resources | 154 |
| abstract_inverted_index.security, | 77 |
| abstract_inverted_index.specially | 172 |
| abstract_inverted_index.stability | 244 |
| abstract_inverted_index.utilities | 283 |
| abstract_inverted_index.validated | 308 |
| abstract_inverted_index.Regression | 268 |
| abstract_inverted_index.Structured | 301 |
| abstract_inverted_index.autonomous | 205 |
| abstract_inverted_index.considered | 236 |
| abstract_inverted_index.framework, | 48 |
| abstract_inverted_index.frameworks | 74 |
| abstract_inverted_index.identified | 239 |
| abstract_inverted_index.injections | 305 |
| abstract_inverted_index.mitigation | 92 |
| abstract_inverted_index.procedure. | 314 |
| abstract_inverted_index.simulation | 278 |
| abstract_inverted_index.structure. | 118 |
| abstract_inverted_index.techniques | 258 |
| abstract_inverted_index.therefore, | 186 |
| abstract_inverted_index.Matplotlib. | 296 |
| abstract_inverted_index.anticipated | 313 |
| abstract_inverted_index.classifiers | 336 |
| abstract_inverted_index.combination | 124, 143 |
| abstract_inverted_index.efficiency, | 64 |
| abstract_inverted_index.environment | 248 |
| abstract_inverted_index.fundamental | 104 |
| abstract_inverted_index.maintenance | 70 |
| abstract_inverted_index.management, | 251 |
| abstract_inverted_index.open-source | 289 |
| abstract_inverted_index.operational | 100 |
| abstract_inverted_index.recognition | 90 |
| abstract_inverted_index.traffic’s | 213 |
| abstract_inverted_index.virtualized | 140 |
| abstract_inverted_index.characterize | 210 |
| abstract_inverted_index.conventional | 195 |
| abstract_inverted_index.encroachment | 110 |
| abstract_inverted_index.environment, | 160 |
| abstract_inverted_index.environment. | 141, 353 |
| abstract_inverted_index.performance, | 67 |
| abstract_inverted_index.proactively. | 102 |
| abstract_inverted_index.Scikit-learn, | 293 |
| abstract_inverted_index.configuration | 55 |
| abstract_inverted_index.heterogeneous | 158 |
| abstract_inverted_index.Virtualization | 46 |
| abstract_inverted_index.abnormalities, | 83 |
| abstract_inverted_index.classification | 316 |
| abstract_inverted_index.vulnerabilities | 60 |
| abstract_inverted_index.characterization | 257 |
| abstract_inverted_index.programming-based | 117 |
| abstract_inverted_index.effectively-identified | 310 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5082292122 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I148520331 |
| citation_normalized_percentile.value | 0.94897304 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |