Machine learning-enabled atomistic insights into phase boundary engineering of solid-solution ferroelectrics Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41524-025-01829-6
Atomistic control of phase boundaries is crucial for optimizing the functional properties of solid-solution ferroelectrics, yet their microstructural mechanisms remain elusive. Here, we harness machine-learning-driven molecular dynamics to resolve the phase boundary behavior in the KNbO3–KTaO3 (KNTO) system. Our simulations reveal that chemical composition and ordering enable precise modulation of polymorphic phase boundaries (PPBs), offering a versatile pathway for materials engineering. Diffused PPBs and polar nano regions, predicted by our model, highly match with experiments, underscoring the fidelity of the machine-learning atomistic simulation. Crucially, we identify elastic and electrostatic mismatches between ferroelectric KNbO3 and paraelectric KTaO3 as the driving forces behind complex microstructural evolution. This work not only resolves the longstanding microstructural debate but also establishes a generalizable framework for phase boundary engineering toward next-generation high-performance ferroelectrics.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41524-025-01829-6
- https://www.nature.com/articles/s41524-025-01829-6.pdf
- OA Status
- gold
- References
- 47
- OpenAlex ID
- https://openalex.org/W4416365650
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416365650Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41524-025-01829-6Digital Object Identifier
- Title
-
Machine learning-enabled atomistic insights into phase boundary engineering of solid-solution ferroelectricsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-19Full publication date if available
- Authors
-
Wanhui Wen, Fanda Zeng, Zhipeng Xing, Ke WangList of authors in order
- Landing page
-
https://doi.org/10.1038/s41524-025-01829-6Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41524-025-01829-6.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41524-025-01829-6.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
47Number of works referenced by this work
Full payload
| id | https://openalex.org/W4416365650 |
|---|---|
| doi | https://doi.org/10.1038/s41524-025-01829-6 |
| ids.doi | https://doi.org/10.1038/s41524-025-01829-6 |
| ids.openalex | https://openalex.org/W4416365650 |
| fwci | |
| type | article |
| title | Machine learning-enabled atomistic insights into phase boundary engineering of solid-solution ferroelectrics |
| biblio.issue | 1 |
| biblio.volume | 11 |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list.value | 2890 |
| apc_list.currency | USD |
| apc_list.value_usd | 2890 |
| apc_paid.value | 2890 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2890 |
| language | en |
| locations[0].id | doi:10.1038/s41524-025-01829-6 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210232664 |
| locations[0].source.issn | 2057-3960 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2057-3960 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | npj Computational Materials |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41524-025-01829-6.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | npj Computational Materials |
| locations[0].landing_page_url | https://doi.org/10.1038/s41524-025-01829-6 |
| locations[1].id | pmh:oai:doaj.org/article:43f15bd54d11450595cddaf18ea3720e |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | npj Computational Materials, Vol 11, Iss 1, Pp 1-9 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/43f15bd54d11450595cddaf18ea3720e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5035864557 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3528-6478 |
| authorships[0].author.display_name | Wanhui Wen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I139759216 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Information Photonics and Optical Communications, School of Physical Science and Technology, Beijing University of Posts and Telecommunications, Beijing, PR China |
| authorships[0].institutions[0].id | https://openalex.org/I139759216 |
| authorships[0].institutions[0].ror | https://ror.org/04w9fbh59 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I139759216 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Posts and Telecommunications |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Weiru Wen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Information Photonics and Optical Communications, School of Physical Science and Technology, Beijing University of Posts and Telecommunications, Beijing, PR China |
| authorships[1].author.id | https://openalex.org/A5014009965 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Fanda Zeng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of New Ceramic Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, PR China |
| authorships[1].institutions[0].id | https://openalex.org/I99065089 |
| authorships[1].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Tsinghua University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fanda Zeng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of New Ceramic Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, PR China |
| authorships[2].author.id | https://openalex.org/A5043000128 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3409-786X |
| authorships[2].author.display_name | Zhipeng Xing |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of New Ceramic Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, PR China |
| authorships[2].institutions[0].id | https://openalex.org/I99065089 |
| authorships[2].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Tsinghua University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhipeng Xing |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of New Ceramic Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, PR China |
| authorships[3].author.id | https://openalex.org/A5000558158 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9840-2427 |
| authorships[3].author.display_name | Ke Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of New Ceramic Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, PR China |
| authorships[3].institutions[0].id | https://openalex.org/I99065089 |
| authorships[3].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Tsinghua University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ke Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of New Ceramic Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, PR China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41524-025-01829-6.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-19T00:00:00 |
| display_name | Machine learning-enabled atomistic insights into phase boundary engineering of solid-solution ferroelectrics |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T12:14:28.193950 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1038/s41524-025-01829-6 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210232664 |
| best_oa_location.source.issn | 2057-3960 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2057-3960 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | npj Computational Materials |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41524-025-01829-6.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | npj Computational Materials |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41524-025-01829-6 |
| primary_location.id | doi:10.1038/s41524-025-01829-6 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210232664 |
| primary_location.source.issn | 2057-3960 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2057-3960 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | npj Computational Materials |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41524-025-01829-6.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | npj Computational Materials |
| primary_location.landing_page_url | https://doi.org/10.1038/s41524-025-01829-6 |
| publication_date | 2025-11-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4394728313, https://openalex.org/W4407978905, https://openalex.org/W4399394788, https://openalex.org/W4411160871, https://openalex.org/W3216202360, https://openalex.org/W2171687796, https://openalex.org/W4362659833, https://openalex.org/W1631755534, https://openalex.org/W2036765860, https://openalex.org/W2938141387, https://openalex.org/W4409283675, https://openalex.org/W2060647357, https://openalex.org/W4403825946, https://openalex.org/W2032833939, https://openalex.org/W2140487805, https://openalex.org/W2078920249, https://openalex.org/W4200455837, https://openalex.org/W2083415705, https://openalex.org/W4315631504, https://openalex.org/W4225405705, https://openalex.org/W4386740800, https://openalex.org/W2025444507, https://openalex.org/W2742127985, https://openalex.org/W2895983012, https://openalex.org/W2075686529, https://openalex.org/W4292648681, https://openalex.org/W1972163131, https://openalex.org/W2276730839, https://openalex.org/W2999821486, https://openalex.org/W2797737797, https://openalex.org/W2069734438, https://openalex.org/W4200445907, https://openalex.org/W1986206901, https://openalex.org/W2086181017, https://openalex.org/W3142815694, https://openalex.org/W116239404, https://openalex.org/W2010551334, https://openalex.org/W2081825083, https://openalex.org/W3006005697, https://openalex.org/W2775708988, https://openalex.org/W2728789193, https://openalex.org/W3201073812, https://openalex.org/W2183964799, https://openalex.org/W2055259893, https://openalex.org/W2028056984, https://openalex.org/W1498712972, https://openalex.org/W4377694431 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 56, 117 |
| abstract_inverted_index.as | 97 |
| abstract_inverted_index.by | 69 |
| abstract_inverted_index.in | 34 |
| abstract_inverted_index.is | 6 |
| abstract_inverted_index.of | 3, 13, 50, 79 |
| abstract_inverted_index.to | 28 |
| abstract_inverted_index.we | 23, 85 |
| abstract_inverted_index.Our | 39 |
| abstract_inverted_index.and | 45, 64, 88, 94 |
| abstract_inverted_index.but | 114 |
| abstract_inverted_index.for | 8, 59, 120 |
| abstract_inverted_index.not | 107 |
| abstract_inverted_index.our | 70 |
| abstract_inverted_index.the | 10, 30, 35, 77, 80, 98, 110 |
| abstract_inverted_index.yet | 16 |
| abstract_inverted_index.PPBs | 63 |
| abstract_inverted_index.This | 105 |
| abstract_inverted_index.also | 115 |
| abstract_inverted_index.nano | 66 |
| abstract_inverted_index.only | 108 |
| abstract_inverted_index.that | 42 |
| abstract_inverted_index.with | 74 |
| abstract_inverted_index.work | 106 |
| abstract_inverted_index.Here, | 22 |
| abstract_inverted_index.KNbO3 | 93 |
| abstract_inverted_index.KTaO3 | 96 |
| abstract_inverted_index.match | 73 |
| abstract_inverted_index.phase | 4, 31, 52, 121 |
| abstract_inverted_index.polar | 65 |
| abstract_inverted_index.their | 17 |
| abstract_inverted_index.(KNTO) | 37 |
| abstract_inverted_index.behind | 101 |
| abstract_inverted_index.debate | 113 |
| abstract_inverted_index.enable | 47 |
| abstract_inverted_index.forces | 100 |
| abstract_inverted_index.highly | 72 |
| abstract_inverted_index.model, | 71 |
| abstract_inverted_index.remain | 20 |
| abstract_inverted_index.reveal | 41 |
| abstract_inverted_index.toward | 124 |
| abstract_inverted_index.(PPBs), | 54 |
| abstract_inverted_index.between | 91 |
| abstract_inverted_index.complex | 102 |
| abstract_inverted_index.control | 2 |
| abstract_inverted_index.crucial | 7 |
| abstract_inverted_index.driving | 99 |
| abstract_inverted_index.elastic | 87 |
| abstract_inverted_index.harness | 24 |
| abstract_inverted_index.pathway | 58 |
| abstract_inverted_index.precise | 48 |
| abstract_inverted_index.resolve | 29 |
| abstract_inverted_index.system. | 38 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Diffused | 62 |
| abstract_inverted_index.behavior | 33 |
| abstract_inverted_index.boundary | 32, 122 |
| abstract_inverted_index.chemical | 43 |
| abstract_inverted_index.dynamics | 27 |
| abstract_inverted_index.elusive. | 21 |
| abstract_inverted_index.fidelity | 78 |
| abstract_inverted_index.identify | 86 |
| abstract_inverted_index.offering | 55 |
| abstract_inverted_index.ordering | 46 |
| abstract_inverted_index.regions, | 67 |
| abstract_inverted_index.resolves | 109 |
| abstract_inverted_index.Atomistic | 1 |
| abstract_inverted_index.atomistic | 82 |
| abstract_inverted_index.framework | 119 |
| abstract_inverted_index.materials | 60 |
| abstract_inverted_index.molecular | 26 |
| abstract_inverted_index.predicted | 68 |
| abstract_inverted_index.versatile | 57 |
| abstract_inverted_index.Crucially, | 84 |
| abstract_inverted_index.boundaries | 5, 53 |
| abstract_inverted_index.evolution. | 104 |
| abstract_inverted_index.functional | 11 |
| abstract_inverted_index.mechanisms | 19 |
| abstract_inverted_index.mismatches | 90 |
| abstract_inverted_index.modulation | 49 |
| abstract_inverted_index.optimizing | 9 |
| abstract_inverted_index.properties | 12 |
| abstract_inverted_index.composition | 44 |
| abstract_inverted_index.engineering | 123 |
| abstract_inverted_index.establishes | 116 |
| abstract_inverted_index.polymorphic | 51 |
| abstract_inverted_index.simulation. | 83 |
| abstract_inverted_index.simulations | 40 |
| abstract_inverted_index.engineering. | 61 |
| abstract_inverted_index.experiments, | 75 |
| abstract_inverted_index.longstanding | 111 |
| abstract_inverted_index.paraelectric | 95 |
| abstract_inverted_index.underscoring | 76 |
| abstract_inverted_index.KNbO3–KTaO3 | 36 |
| abstract_inverted_index.electrostatic | 89 |
| abstract_inverted_index.ferroelectric | 92 |
| abstract_inverted_index.generalizable | 118 |
| abstract_inverted_index.solid-solution | 14 |
| abstract_inverted_index.ferroelectrics, | 15 |
| abstract_inverted_index.ferroelectrics. | 127 |
| abstract_inverted_index.microstructural | 18, 103, 112 |
| abstract_inverted_index.next-generation | 125 |
| abstract_inverted_index.high-performance | 126 |
| abstract_inverted_index.machine-learning | 81 |
| abstract_inverted_index.machine-learning-driven | 25 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |