Machine learning for cryosection pathology predicts the 2021 WHO classification of glioma Article Swipe
MacLean P. Nasrallah
,
Junhan Zhao
,
Cheng Che Tsai
,
David M. Meredith
,
Eliana Marostica
,
Keith L. Ligon
,
Jeffrey A. Golden
,
Kun‐Hsing Yu
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.medj.2023.06.002
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.medj.2023.06.002
Related Topics
Concepts
Metadata
- Type
- article
- Language
- no
- Landing Page
- https://doi.org/10.1016/j.medj.2023.06.002
- http://www.cell.com/article/S2666634023001897/pdf
- OA Status
- bronze
- Cited By
- 48
- References
- 60
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4383533409
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4383533409Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.medj.2023.06.002Digital Object Identifier
- Title
-
Machine learning for cryosection pathology predicts the 2021 WHO classification of gliomaWork title
- Type
-
articleOpenAlex work type
- Language
-
noPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-07Full publication date if available
- Authors
-
MacLean P. Nasrallah, Junhan Zhao, Cheng Che Tsai, David M. Meredith, Eliana Marostica, Keith L. Ligon, Jeffrey A. Golden, Kun‐Hsing YuList of authors in order
- Landing page
-
https://doi.org/10.1016/j.medj.2023.06.002Publisher landing page
- PDF URL
-
https://www.cell.com/article/S2666634023001897/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://www.cell.com/article/S2666634023001897/pdfDirect OA link when available
- Concepts
-
Gold standard (test), Medical diagnosis, Glioma, Computer science, Surgical pathology, Pathology, Medicine, Process (computing), Radiology, Artificial intelligence, Cancer research, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
48Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 29, 2024: 18, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
60Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4383533409 |
|---|---|
| doi | https://doi.org/10.1016/j.medj.2023.06.002 |
| ids.doi | https://doi.org/10.1016/j.medj.2023.06.002 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37421953 |
| ids.openalex | https://openalex.org/W4383533409 |
| fwci | 14.83463833 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000175 |
| mesh[1].descriptor_ui | D001932 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | diagnosis |
| mesh[1].descriptor_name | Brain Neoplasms |
| mesh[2].qualifier_ui | Q000235 |
| mesh[2].descriptor_ui | D001932 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | genetics |
| mesh[2].descriptor_name | Brain Neoplasms |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006720 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Homozygote |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D017384 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Sequence Deletion |
| mesh[5].qualifier_ui | Q000175 |
| mesh[5].descriptor_ui | D005910 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | diagnosis |
| mesh[5].descriptor_name | Glioma |
| mesh[6].qualifier_ui | Q000235 |
| mesh[6].descriptor_ui | D005910 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | genetics |
| mesh[6].descriptor_name | Glioma |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000069550 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Machine Learning |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D014944 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | World Health Organization |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | Q000175 |
| mesh[10].descriptor_ui | D001932 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | diagnosis |
| mesh[10].descriptor_name | Brain Neoplasms |
| mesh[11].qualifier_ui | Q000235 |
| mesh[11].descriptor_ui | D001932 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | genetics |
| mesh[11].descriptor_name | Brain Neoplasms |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006720 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Homozygote |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D017384 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Sequence Deletion |
| mesh[14].qualifier_ui | Q000175 |
| mesh[14].descriptor_ui | D005910 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | diagnosis |
| mesh[14].descriptor_name | Glioma |
| mesh[15].qualifier_ui | Q000235 |
| mesh[15].descriptor_ui | D005910 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | genetics |
| mesh[15].descriptor_name | Glioma |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000069550 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Machine Learning |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D014944 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | World Health Organization |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D006801 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Humans |
| mesh[19].qualifier_ui | Q000175 |
| mesh[19].descriptor_ui | D001932 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | diagnosis |
| mesh[19].descriptor_name | Brain Neoplasms |
| mesh[20].qualifier_ui | Q000235 |
| mesh[20].descriptor_ui | D001932 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | genetics |
| mesh[20].descriptor_name | Brain Neoplasms |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D006720 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Homozygote |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D017384 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Sequence Deletion |
| mesh[23].qualifier_ui | Q000175 |
| mesh[23].descriptor_ui | D005910 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | diagnosis |
| mesh[23].descriptor_name | Glioma |
| mesh[24].qualifier_ui | Q000235 |
| mesh[24].descriptor_ui | D005910 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | genetics |
| mesh[24].descriptor_name | Glioma |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D000069550 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Machine Learning |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D014944 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | World Health Organization |
| type | article |
| title | Machine learning for cryosection pathology predicts the 2021 WHO classification of glioma |
| biblio.issue | 8 |
| biblio.volume | 4 |
| biblio.last_page | 540.e4 |
| biblio.first_page | 526 |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9979000091552734 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T12386 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9937999844551086 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced X-ray and CT Imaging |
| topics[2].id | https://openalex.org/T10522 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9532999992370605 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Medical Imaging Techniques and Applications |
| funders[0].id | https://openalex.org/F4320308347 |
| funders[0].ror | https://ror.org/04b6nzv94 |
| funders[0].display_name | Brigham and Women's Hospital |
| funders[1].id | https://openalex.org/F4320309254 |
| funders[1].ror | |
| funders[1].display_name | Harvard Medical School |
| funders[2].id | https://openalex.org/F4320309327 |
| funders[2].ror | https://ror.org/00njsd438 |
| funders[2].display_name | |
| funders[3].id | https://openalex.org/F4320310091 |
| funders[3].ror | https://ror.org/04py2rh25 |
| funders[3].display_name | Partners Healthcare |
| funders[4].id | https://openalex.org/F4320337354 |
| funders[4].ror | https://ror.org/04q48ey07 |
| funders[4].display_name | National Institute of General Medical Sciences |
| is_xpac | False |
| apc_list.value | 8900 |
| apc_list.currency | USD |
| apc_list.value_usd | 8900 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C40993552 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7149692177772522 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q514654 |
| concepts[0].display_name | Gold standard (test) |
| concepts[1].id | https://openalex.org/C534262118 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5672695636749268 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q177719 |
| concepts[1].display_name | Medical diagnosis |
| concepts[2].id | https://openalex.org/C2778227246 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5657308101654053 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1365309 |
| concepts[2].display_name | Glioma |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5180673599243164 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C194495517 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4505142569541931 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7646222 |
| concepts[4].display_name | Surgical pathology |
| concepts[5].id | https://openalex.org/C142724271 |
| concepts[5].level | 1 |
| concepts[5].score | 0.44804370403289795 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[5].display_name | Pathology |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4299105703830719 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C98045186 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4247286319732666 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[7].display_name | Process (computing) |
| concepts[8].id | https://openalex.org/C126838900 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3301117420196533 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[8].display_name | Radiology |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.322131872177124 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C502942594 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3421914 |
| concepts[10].display_name | Cancer research |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/gold-standard |
| keywords[0].score | 0.7149692177772522 |
| keywords[0].display_name | Gold standard (test) |
| keywords[1].id | https://openalex.org/keywords/medical-diagnosis |
| keywords[1].score | 0.5672695636749268 |
| keywords[1].display_name | Medical diagnosis |
| keywords[2].id | https://openalex.org/keywords/glioma |
| keywords[2].score | 0.5657308101654053 |
| keywords[2].display_name | Glioma |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5180673599243164 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/surgical-pathology |
| keywords[4].score | 0.4505142569541931 |
| keywords[4].display_name | Surgical pathology |
| keywords[5].id | https://openalex.org/keywords/pathology |
| keywords[5].score | 0.44804370403289795 |
| keywords[5].display_name | Pathology |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.4299105703830719 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/process |
| keywords[7].score | 0.4247286319732666 |
| keywords[7].display_name | Process (computing) |
| keywords[8].id | https://openalex.org/keywords/radiology |
| keywords[8].score | 0.3301117420196533 |
| keywords[8].display_name | Radiology |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.322131872177124 |
| keywords[9].display_name | Artificial intelligence |
| language | no |
| locations[0].id | doi:10.1016/j.medj.2023.06.002 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210167770 |
| locations[0].source.issn | 2666-6340, 2666-6359 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2666-6340 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Med |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | http://www.cell.com/article/S2666634023001897/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Med |
| locations[0].landing_page_url | https://doi.org/10.1016/j.medj.2023.06.002 |
| locations[1].id | pmid:37421953 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Med (New York, N.Y.) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37421953 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10527821 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10527821/pdf/nihms-1910424.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Med |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10527821 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5052402717 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4861-0898 |
| authorships[0].author.display_name | MacLean P. Nasrallah |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA |
| authorships[0].institutions[0].id | https://openalex.org/I79576946 |
| authorships[0].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Pennsylvania |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | MacLean P. Nasrallah |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA |
| authorships[1].author.id | https://openalex.org/A5033670526 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0316-8365 |
| authorships[1].author.display_name | Junhan Zhao |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA |
| authorships[1].institutions[0].id | https://openalex.org/I136199984 |
| authorships[1].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Harvard University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Junhan Zhao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA |
| authorships[2].author.id | https://openalex.org/A5021619316 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Cheng Che Tsai |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA |
| authorships[2].institutions[0].id | https://openalex.org/I136199984 |
| authorships[2].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Harvard University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cheng Che Tsai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA |
| authorships[3].author.id | https://openalex.org/A5047837571 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7054-8624 |
| authorships[3].author.display_name | David M. Meredith |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1283280774 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA |
| authorships[3].institutions[0].id | https://openalex.org/I1283280774 |
| authorships[3].institutions[0].ror | https://ror.org/04b6nzv94 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1283280774, https://openalex.org/I48633490 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Brigham and Women's Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | David Meredith |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA |
| authorships[4].author.id | https://openalex.org/A5030529105 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2061-243X |
| authorships[4].author.display_name | Eliana Marostica |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[4].affiliations[0].raw_affiliation_string | Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Boston, MA 02139, USA |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I136199984 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA |
| authorships[4].institutions[0].id | https://openalex.org/I136199984 |
| authorships[4].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Harvard University |
| authorships[4].institutions[1].id | https://openalex.org/I63966007 |
| authorships[4].institutions[1].ror | https://ror.org/042nb2s44 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I63966007 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | Massachusetts Institute of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Eliana Marostica |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA, Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Boston, MA 02139, USA |
| authorships[5].author.id | https://openalex.org/A5010270402 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7733-600X |
| authorships[5].author.display_name | Keith L. Ligon |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210117453 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA |
| authorships[5].institutions[0].id | https://openalex.org/I4210117453 |
| authorships[5].institutions[0].ror | https://ror.org/02jzgtq86 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210117453 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Dana-Farber Cancer Institute |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Keith L. Ligon |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA |
| authorships[6].author.id | https://openalex.org/A5009572751 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9933-5502 |
| authorships[6].author.display_name | Jeffrey A. Golden |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1282927834 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I1283280774 |
| authorships[6].affiliations[1].raw_affiliation_string | Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA |
| authorships[6].institutions[0].id | https://openalex.org/I1283280774 |
| authorships[6].institutions[0].ror | https://ror.org/04b6nzv94 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I1283280774, https://openalex.org/I48633490 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Brigham and Women's Hospital |
| authorships[6].institutions[1].id | https://openalex.org/I1282927834 |
| authorships[6].institutions[1].ror | https://ror.org/02pammg90 |
| authorships[6].institutions[1].type | healthcare |
| authorships[6].institutions[1].lineage | https://openalex.org/I1282927834 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | Cedars-Sinai Medical Center |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jeffrey A. Golden |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA, Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA |
| authorships[7].author.id | https://openalex.org/A5061562703 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-9892-8218 |
| authorships[7].author.display_name | Kun‐Hsing Yu |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I1283280774 |
| authorships[7].affiliations[1].raw_affiliation_string | Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA |
| authorships[7].institutions[0].id | https://openalex.org/I1283280774 |
| authorships[7].institutions[0].ror | https://ror.org/04b6nzv94 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I1283280774, https://openalex.org/I48633490 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Brigham and Women's Hospital |
| authorships[7].institutions[1].id | https://openalex.org/I136199984 |
| authorships[7].institutions[1].ror | https://ror.org/03vek6s52 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I136199984 |
| authorships[7].institutions[1].country_code | US |
| authorships[7].institutions[1].display_name | Harvard University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Kun-Hsing Yu |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://www.cell.com/article/S2666634023001897/pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine learning for cryosection pathology predicts the 2021 WHO classification of glioma |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9979000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W3208778134, https://openalex.org/W3005931108, https://openalex.org/W4386951147, https://openalex.org/W2887359201, https://openalex.org/W4308767530, https://openalex.org/W2362999506, https://openalex.org/W4205170363, https://openalex.org/W2414148986, https://openalex.org/W1764967294, https://openalex.org/W2330758984 |
| cited_by_count | 48 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 29 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 18 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1016/j.medj.2023.06.002 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210167770 |
| best_oa_location.source.issn | 2666-6340, 2666-6359 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2666-6340 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Med |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://www.cell.com/article/S2666634023001897/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Med |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.medj.2023.06.002 |
| primary_location.id | doi:10.1016/j.medj.2023.06.002 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210167770 |
| primary_location.source.issn | 2666-6340, 2666-6359 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2666-6340 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Med |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | http://www.cell.com/article/S2666634023001897/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Med |
| primary_location.landing_page_url | https://doi.org/10.1016/j.medj.2023.06.002 |
| publication_date | 2023-07-07 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3174246647, https://openalex.org/W3023953516, https://openalex.org/W2593604059, https://openalex.org/W3015988344, https://openalex.org/W2141570482, https://openalex.org/W2494461917, https://openalex.org/W4313544674, https://openalex.org/W3005337228, https://openalex.org/W2895763047, https://openalex.org/W2769322745, https://openalex.org/W2956228567, https://openalex.org/W3216119570, https://openalex.org/W3135547872, https://openalex.org/W4365447146, https://openalex.org/W2514628397, https://openalex.org/W3099458507, https://openalex.org/W3049190448, https://openalex.org/W3139326336, https://openalex.org/W3023087441, https://openalex.org/W6720260345, https://openalex.org/W3043484350, https://openalex.org/W3186288132, https://openalex.org/W4360610013, https://openalex.org/W3113328935, https://openalex.org/W3038831183, https://openalex.org/W6782164699, https://openalex.org/W2913386802, https://openalex.org/W6784333009, https://openalex.org/W2470130773, https://openalex.org/W2948930564, https://openalex.org/W3110787789, https://openalex.org/W6600367688, https://openalex.org/W4247691581, https://openalex.org/W2747774814, https://openalex.org/W2909982270, https://openalex.org/W1812256879, https://openalex.org/W2763129844, https://openalex.org/W2518206830, https://openalex.org/W2963899699, https://openalex.org/W2158501128, https://openalex.org/W3043835773, https://openalex.org/W3044996171, https://openalex.org/W6792155083, https://openalex.org/W4229049871, https://openalex.org/W1532797618, https://openalex.org/W3044997014, https://openalex.org/W6771902295, https://openalex.org/W2084461677, https://openalex.org/W2121668219, https://openalex.org/W6762718338, https://openalex.org/W2889326414, https://openalex.org/W3203168750, https://openalex.org/W8870360, https://openalex.org/W2955425717, https://openalex.org/W2995570318, https://openalex.org/W3138516171, https://openalex.org/W2995323649, https://openalex.org/W3081776721, https://openalex.org/W2956589719, https://openalex.org/W3094502228 |
| referenced_works_count | 60 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5061562703 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I1283280774, https://openalex.org/I136199984 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.550000011920929 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.99175032 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |