Machine Learning for Detection of Correct Peripherally Inserted Central Catheter Tip Position from Radiology Reports in Infants Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1055/s-0041-1735178
Background In critically ill infants, the position of a peripherally inserted central catheter (PICC) must be confirmed frequently, as the tip may move from its original position and run the risk of hyperosmolar vascular damage or extravasation into surrounding spaces. Automated detection of PICC tip position holds great promise for alerting bedside clinicians to noncentral PICCs. Objectives This research seeks to use natural language processing (NLP) and supervised machine learning (ML) techniques to predict PICC tip position based primarily on text analysis of radiograph reports from infants with an upper extremity PICC. Methods Radiographs, containing a PICC line in infants under 6 months of age, were manually classified into 12 anatomical locations based on the radiologist's textual report of the PICC line's tip. After categorization, we performed a 70/30 train/test split and benchmarked the performance of seven different (neural network, support vector machine, the naïve Bayes, decision tree, random forest, AdaBoost, and K-nearest neighbors) supervised ML algorithms. After optimization, we calculated accuracy, precision, and recall of each algorithm's ability to correctly categorize the stated location of the PICC tip. Results A total of 17,337 radiographs met criteria for inclusion and were labeled manually. Interrater agreement was 99.1%. Support vector machines and neural networks yielded accuracies as high as 98% in identifying PICC tips in central versus noncentral position (binary outcome) and accuracies as high as 95% when attempting to categorize the individual anatomical location (12-category outcome). Conclusion Our study shows that ML classifiers can automatically extract the anatomical location of PICC tips from radiology reports. Two ML classifiers, support vector machine (SVM) and a neural network, obtained top accuracies in both binary and multiple category predictions. Implementing these algorithms in a neonatal intensive care unit as a clinical decision support system may help clinicians address PICC line position.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1055/s-0041-1735178
- http://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0041-1735178.pdf
- OA Status
- bronze
- Cited By
- 9
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3198547783
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3198547783Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1055/s-0041-1735178Digital Object Identifier
- Title
-
Machine Learning for Detection of Correct Peripherally Inserted Central Catheter Tip Position from Radiology Reports in InfantsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-01Full publication date if available
- Authors
-
Manan Shah, Derek Shu, V. B. Surya Prasath, Yizhao Ni, Andrew H. Schapiro, Kevin R. DufendachList of authors in order
- Landing page
-
https://doi.org/10.1055/s-0041-1735178Publisher landing page
- PDF URL
-
https://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0041-1735178.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0041-1735178.pdfDirect OA link when available
- Concepts
-
Peripherally inserted central catheter, Artificial intelligence, Support vector machine, Naive Bayes classifier, Medicine, Random forest, Categorization, Computer science, Radiography, Deep learning, Machine learning, Radiology, CatheterTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1, 2023: 2, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3198547783 |
|---|---|
| doi | https://doi.org/10.1055/s-0041-1735178 |
| ids.doi | https://doi.org/10.1055/s-0041-1735178 |
| ids.mag | 3198547783 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34496420 |
| ids.openalex | https://openalex.org/W3198547783 |
| fwci | 1.9689289 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D001499 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Bayes Theorem |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D002405 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Catheterization, Central Venous |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D057785 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Catheters |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D007223 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Infant |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D007231 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Infant, Newborn |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000069550 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Machine Learning |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D011871 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Radiology |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D012189 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Retrospective Studies |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D001499 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Bayes Theorem |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D002405 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Catheterization, Central Venous |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D057785 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Catheters |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D007223 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Infant |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D007231 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Infant, Newborn |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000069550 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Machine Learning |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D011871 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Radiology |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D012189 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Retrospective Studies |
| type | article |
| title | Machine Learning for Detection of Correct Peripherally Inserted Central Catheter Tip Position from Radiology Reports in Infants |
| biblio.issue | 04 |
| biblio.volume | 12 |
| biblio.last_page | 863 |
| biblio.first_page | 856 |
| topics[0].id | https://openalex.org/T10641 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9965999722480774 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3604 |
| topics[0].subfield.display_name | Emergency Medical Services |
| topics[0].display_name | Central Venous Catheters and Hemodialysis |
| topics[1].id | https://openalex.org/T11095 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9574999809265137 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2711 |
| topics[1].subfield.display_name | Emergency Medicine |
| topics[1].display_name | Emergency and Acute Care Studies |
| topics[2].id | https://openalex.org/T11636 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9484999775886536 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2718 |
| topics[2].subfield.display_name | Health Informatics |
| topics[2].display_name | Artificial Intelligence in Healthcare and Education |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777960920 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6192257404327393 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7168716 |
| concepts[0].display_name | Peripherally inserted central catheter |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6181305050849915 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C12267149 |
| concepts[2].level | 2 |
| concepts[2].score | 0.598751962184906 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[2].display_name | Support vector machine |
| concepts[3].id | https://openalex.org/C52001869 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5938517451286316 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q812530 |
| concepts[3].display_name | Naive Bayes classifier |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5665745735168457 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C169258074 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5499014258384705 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[5].display_name | Random forest |
| concepts[6].id | https://openalex.org/C94124525 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5298407077789307 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q912550 |
| concepts[6].display_name | Categorization |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.46675920486450195 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C36454342 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4576702117919922 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q245341 |
| concepts[8].display_name | Radiography |
| concepts[9].id | https://openalex.org/C108583219 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42193466424942017 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[9].display_name | Deep learning |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3835488557815552 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C126838900 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32775700092315674 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[11].display_name | Radiology |
| concepts[12].id | https://openalex.org/C2781267111 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2716054916381836 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q652297 |
| concepts[12].display_name | Catheter |
| keywords[0].id | https://openalex.org/keywords/peripherally-inserted-central-catheter |
| keywords[0].score | 0.6192257404327393 |
| keywords[0].display_name | Peripherally inserted central catheter |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6181305050849915 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/support-vector-machine |
| keywords[2].score | 0.598751962184906 |
| keywords[2].display_name | Support vector machine |
| keywords[3].id | https://openalex.org/keywords/naive-bayes-classifier |
| keywords[3].score | 0.5938517451286316 |
| keywords[3].display_name | Naive Bayes classifier |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.5665745735168457 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/random-forest |
| keywords[5].score | 0.5499014258384705 |
| keywords[5].display_name | Random forest |
| keywords[6].id | https://openalex.org/keywords/categorization |
| keywords[6].score | 0.5298407077789307 |
| keywords[6].display_name | Categorization |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.46675920486450195 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/radiography |
| keywords[8].score | 0.4576702117919922 |
| keywords[8].display_name | Radiography |
| keywords[9].id | https://openalex.org/keywords/deep-learning |
| keywords[9].score | 0.42193466424942017 |
| keywords[9].display_name | Deep learning |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.3835488557815552 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/radiology |
| keywords[11].score | 0.32775700092315674 |
| keywords[11].display_name | Radiology |
| keywords[12].id | https://openalex.org/keywords/catheter |
| keywords[12].score | 0.2716054916381836 |
| keywords[12].display_name | Catheter |
| language | en |
| locations[0].id | doi:10.1055/s-0041-1735178 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S187139995 |
| locations[0].source.issn | 1869-0327 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1869-0327 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Applied Clinical Informatics |
| locations[0].source.host_organization | https://openalex.org/P4310320000 |
| locations[0].source.host_organization_name | Thieme Medical Publishers (Germany) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320000 |
| locations[0].source.host_organization_lineage_names | Thieme Medical Publishers (Germany) |
| locations[0].license | |
| locations[0].pdf_url | http://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0041-1735178.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Clinical Informatics |
| locations[0].landing_page_url | https://doi.org/10.1055/s-0041-1735178 |
| locations[1].id | pmid:34496420 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Applied clinical informatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34496420 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:8426077 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Appl Clin Inform |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8426077 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5015468698 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0874-3373 |
| authorships[0].author.display_name | Manan Shah |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1285204247 |
| authorships[0].affiliations[0].raw_affiliation_string | Division of Neonatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States |
| authorships[0].institutions[0].id | https://openalex.org/I1285204247 |
| authorships[0].institutions[0].ror | https://ror.org/01hcyya48 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I1285204247 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Cincinnati Children's Hospital Medical Center |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Manan Shah |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Division of Neonatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States |
| authorships[1].author.id | https://openalex.org/A5073375772 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0737-0392 |
| authorships[1].author.display_name | Derek Shu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I92156820 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States |
| authorships[1].institutions[0].id | https://openalex.org/I92156820 |
| authorships[1].institutions[0].ror | https://ror.org/02p72h367 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I92156820 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Cincinnati Medical Center |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Derek Shu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States |
| authorships[2].author.id | https://openalex.org/A5017246903 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7163-7453 |
| authorships[2].author.display_name | V. B. Surya Prasath |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1285204247 |
| authorships[2].affiliations[0].raw_affiliation_string | Division of Bioinformatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States |
| authorships[2].institutions[0].id | https://openalex.org/I1285204247 |
| authorships[2].institutions[0].ror | https://ror.org/01hcyya48 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I1285204247 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Cincinnati Children's Hospital Medical Center |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | V. B. Surya Prasath |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Division of Bioinformatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States |
| authorships[3].author.id | https://openalex.org/A5013528584 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8599-454X |
| authorships[3].author.display_name | Yizhao Ni |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1285204247 |
| authorships[3].affiliations[0].raw_affiliation_string | Division of Bioinformatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I92156820 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States |
| authorships[3].institutions[0].id | https://openalex.org/I1285204247 |
| authorships[3].institutions[0].ror | https://ror.org/01hcyya48 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1285204247 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Cincinnati Children's Hospital Medical Center |
| authorships[3].institutions[1].id | https://openalex.org/I92156820 |
| authorships[3].institutions[1].ror | https://ror.org/02p72h367 |
| authorships[3].institutions[1].type | healthcare |
| authorships[3].institutions[1].lineage | https://openalex.org/I92156820 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | University of Cincinnati Medical Center |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yizhao Ni |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States, Division of Bioinformatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States |
| authorships[4].author.id | https://openalex.org/A5066926813 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3041-8059 |
| authorships[4].author.display_name | Andrew H. Schapiro |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I92156820 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I1285204247 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States |
| authorships[4].institutions[0].id | https://openalex.org/I1285204247 |
| authorships[4].institutions[0].ror | https://ror.org/01hcyya48 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I1285204247 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Cincinnati Children's Hospital Medical Center |
| authorships[4].institutions[1].id | https://openalex.org/I92156820 |
| authorships[4].institutions[1].ror | https://ror.org/02p72h367 |
| authorships[4].institutions[1].type | healthcare |
| authorships[4].institutions[1].lineage | https://openalex.org/I92156820 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | University of Cincinnati Medical Center |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Andrew H. Schapiro |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States |
| authorships[5].author.id | https://openalex.org/A5077150971 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Kevin R. Dufendach |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I92156820 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I1285204247 |
| authorships[5].affiliations[1].raw_affiliation_string | Division of Neonatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States |
| authorships[5].affiliations[2].institution_ids | https://openalex.org/I1285204247 |
| authorships[5].affiliations[2].raw_affiliation_string | Division of Bioinformatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States |
| authorships[5].institutions[0].id | https://openalex.org/I1285204247 |
| authorships[5].institutions[0].ror | https://ror.org/01hcyya48 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I1285204247 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Cincinnati Children's Hospital Medical Center |
| authorships[5].institutions[1].id | https://openalex.org/I92156820 |
| authorships[5].institutions[1].ror | https://ror.org/02p72h367 |
| authorships[5].institutions[1].type | healthcare |
| authorships[5].institutions[1].lineage | https://openalex.org/I92156820 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | University of Cincinnati Medical Center |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Kevin R. Dufendach |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States, Division of Bioinformatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States, Division of Neonatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0041-1735178.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine Learning for Detection of Correct Peripherally Inserted Central Catheter Tip Position from Radiology Reports in Infants |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10641 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9965999722480774 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3604 |
| primary_topic.subfield.display_name | Emergency Medical Services |
| primary_topic.display_name | Central Venous Catheters and Hemodialysis |
| related_works | https://openalex.org/W4200112873, https://openalex.org/W4367336074, https://openalex.org/W2955796858, https://openalex.org/W4224941037, https://openalex.org/W4379620016, https://openalex.org/W3154045278, https://openalex.org/W3210764983, https://openalex.org/W3089416646, https://openalex.org/W4367335949, https://openalex.org/W2004826645 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1055/s-0041-1735178 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S187139995 |
| best_oa_location.source.issn | 1869-0327 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1869-0327 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Applied Clinical Informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320000 |
| best_oa_location.source.host_organization_name | Thieme Medical Publishers (Germany) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320000 |
| best_oa_location.source.host_organization_lineage_names | Thieme Medical Publishers (Germany) |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0041-1735178.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Clinical Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.1055/s-0041-1735178 |
| primary_location.id | doi:10.1055/s-0041-1735178 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S187139995 |
| primary_location.source.issn | 1869-0327 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1869-0327 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Applied Clinical Informatics |
| primary_location.source.host_organization | https://openalex.org/P4310320000 |
| primary_location.source.host_organization_name | Thieme Medical Publishers (Germany) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320000 |
| primary_location.source.host_organization_lineage_names | Thieme Medical Publishers (Germany) |
| primary_location.license | |
| primary_location.pdf_url | http://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0041-1735178.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Clinical Informatics |
| primary_location.landing_page_url | https://doi.org/10.1055/s-0041-1735178 |
| publication_date | 2021-08-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2040443354, https://openalex.org/W2409994597, https://openalex.org/W2941736751, https://openalex.org/W2995341106, https://openalex.org/W2741847682, https://openalex.org/W1991138362, https://openalex.org/W2971757746, https://openalex.org/W2788533098, https://openalex.org/W2338526423, https://openalex.org/W2735580341, https://openalex.org/W2606089314, https://openalex.org/W2982280746, https://openalex.org/W2785406638, https://openalex.org/W3014284538, https://openalex.org/W2549939702, https://openalex.org/W2208967483, https://openalex.org/W2611878561, https://openalex.org/W2177870565, https://openalex.org/W2884205346, https://openalex.org/W2810349670, https://openalex.org/W2794518994, https://openalex.org/W2581082771, https://openalex.org/W2988716771, https://openalex.org/W2800600955, https://openalex.org/W2761196163, https://openalex.org/W2918369972, https://openalex.org/W6675354045, https://openalex.org/W4247624578, https://openalex.org/W3034019787, https://openalex.org/W3116523421, https://openalex.org/W2461681069, https://openalex.org/W2794457162, https://openalex.org/W2624756857, https://openalex.org/W1972190293, https://openalex.org/W2153072644, https://openalex.org/W2896556344, https://openalex.org/W1510073064, https://openalex.org/W2911964244, https://openalex.org/W2242464395, https://openalex.org/W2101234009, https://openalex.org/W2460676950, https://openalex.org/W3123554940, https://openalex.org/W1966027195, https://openalex.org/W4210984920 |
| referenced_works_count | 44 |
| abstract_inverted_index.6 | 102 |
| abstract_inverted_index.A | 181 |
| abstract_inverted_index.a | 9, 96, 128, 264, 281, 287 |
| abstract_inverted_index.12 | 110 |
| abstract_inverted_index.In | 2 |
| abstract_inverted_index.ML | 156, 242, 257 |
| abstract_inverted_index.an | 89 |
| abstract_inverted_index.as | 19, 206, 208, 223, 225, 286 |
| abstract_inverted_index.be | 16 |
| abstract_inverted_index.in | 99, 210, 214, 270, 280 |
| abstract_inverted_index.of | 8, 32, 43, 83, 104, 119, 136, 166, 176, 183, 250 |
| abstract_inverted_index.on | 80, 114 |
| abstract_inverted_index.or | 36 |
| abstract_inverted_index.to | 54, 61, 73, 170, 229 |
| abstract_inverted_index.we | 126, 160 |
| abstract_inverted_index.95% | 226 |
| abstract_inverted_index.98% | 209 |
| abstract_inverted_index.Our | 238 |
| abstract_inverted_index.Two | 256 |
| abstract_inverted_index.and | 28, 67, 132, 152, 164, 190, 201, 221, 263, 273 |
| abstract_inverted_index.can | 244 |
| abstract_inverted_index.for | 50, 188 |
| abstract_inverted_index.ill | 4 |
| abstract_inverted_index.its | 25 |
| abstract_inverted_index.may | 22, 292 |
| abstract_inverted_index.met | 186 |
| abstract_inverted_index.run | 29 |
| abstract_inverted_index.the | 6, 20, 30, 115, 120, 134, 144, 173, 177, 231, 247 |
| abstract_inverted_index.tip | 21, 45, 76 |
| abstract_inverted_index.top | 268 |
| abstract_inverted_index.use | 62 |
| abstract_inverted_index.was | 196 |
| abstract_inverted_index.(ML) | 71 |
| abstract_inverted_index.PICC | 44, 75, 97, 121, 178, 212, 251, 296 |
| abstract_inverted_index.This | 58 |
| abstract_inverted_index.age, | 105 |
| abstract_inverted_index.both | 271 |
| abstract_inverted_index.care | 284 |
| abstract_inverted_index.each | 167 |
| abstract_inverted_index.from | 24, 86, 253 |
| abstract_inverted_index.help | 293 |
| abstract_inverted_index.high | 207, 224 |
| abstract_inverted_index.into | 38, 109 |
| abstract_inverted_index.line | 98, 297 |
| abstract_inverted_index.move | 23 |
| abstract_inverted_index.must | 15 |
| abstract_inverted_index.risk | 31 |
| abstract_inverted_index.text | 81 |
| abstract_inverted_index.that | 241 |
| abstract_inverted_index.tip. | 123, 179 |
| abstract_inverted_index.tips | 213, 252 |
| abstract_inverted_index.unit | 285 |
| abstract_inverted_index.were | 106, 191 |
| abstract_inverted_index.when | 227 |
| abstract_inverted_index.with | 88 |
| abstract_inverted_index.(NLP) | 66 |
| abstract_inverted_index.(SVM) | 262 |
| abstract_inverted_index.70/30 | 129 |
| abstract_inverted_index.After | 124, 158 |
| abstract_inverted_index.PICC. | 92 |
| abstract_inverted_index.based | 78, 113 |
| abstract_inverted_index.great | 48 |
| abstract_inverted_index.holds | 47 |
| abstract_inverted_index.seeks | 60 |
| abstract_inverted_index.seven | 137 |
| abstract_inverted_index.shows | 240 |
| abstract_inverted_index.split | 131 |
| abstract_inverted_index.study | 239 |
| abstract_inverted_index.these | 278 |
| abstract_inverted_index.total | 182 |
| abstract_inverted_index.tree, | 148 |
| abstract_inverted_index.under | 101 |
| abstract_inverted_index.upper | 90 |
| abstract_inverted_index.(PICC) | 14 |
| abstract_inverted_index.17,337 | 184 |
| abstract_inverted_index.99.1%. | 197 |
| abstract_inverted_index.Bayes, | 146 |
| abstract_inverted_index.PICCs. | 56 |
| abstract_inverted_index.binary | 272 |
| abstract_inverted_index.damage | 35 |
| abstract_inverted_index.line's | 122 |
| abstract_inverted_index.months | 103 |
| abstract_inverted_index.naïve | 145 |
| abstract_inverted_index.neural | 202, 265 |
| abstract_inverted_index.random | 149 |
| abstract_inverted_index.recall | 165 |
| abstract_inverted_index.report | 118 |
| abstract_inverted_index.stated | 174 |
| abstract_inverted_index.system | 291 |
| abstract_inverted_index.vector | 142, 199, 260 |
| abstract_inverted_index.versus | 216 |
| abstract_inverted_index.(binary | 219 |
| abstract_inverted_index.(neural | 139 |
| abstract_inverted_index.Methods | 93 |
| abstract_inverted_index.Results | 180 |
| abstract_inverted_index.Support | 198 |
| abstract_inverted_index.ability | 169 |
| abstract_inverted_index.address | 295 |
| abstract_inverted_index.bedside | 52 |
| abstract_inverted_index.central | 12, 215 |
| abstract_inverted_index.extract | 246 |
| abstract_inverted_index.forest, | 150 |
| abstract_inverted_index.infants | 87, 100 |
| abstract_inverted_index.labeled | 192 |
| abstract_inverted_index.machine | 69, 261 |
| abstract_inverted_index.natural | 63 |
| abstract_inverted_index.predict | 74 |
| abstract_inverted_index.promise | 49 |
| abstract_inverted_index.reports | 85 |
| abstract_inverted_index.spaces. | 40 |
| abstract_inverted_index.support | 141, 259, 290 |
| abstract_inverted_index.textual | 117 |
| abstract_inverted_index.yielded | 204 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.alerting | 51 |
| abstract_inverted_index.analysis | 82 |
| abstract_inverted_index.category | 275 |
| abstract_inverted_index.catheter | 13 |
| abstract_inverted_index.clinical | 288 |
| abstract_inverted_index.criteria | 187 |
| abstract_inverted_index.decision | 147, 289 |
| abstract_inverted_index.infants, | 5 |
| abstract_inverted_index.inserted | 11 |
| abstract_inverted_index.language | 64 |
| abstract_inverted_index.learning | 70 |
| abstract_inverted_index.location | 175, 234, 249 |
| abstract_inverted_index.machine, | 143 |
| abstract_inverted_index.machines | 200 |
| abstract_inverted_index.manually | 107 |
| abstract_inverted_index.multiple | 274 |
| abstract_inverted_index.neonatal | 282 |
| abstract_inverted_index.network, | 140, 266 |
| abstract_inverted_index.networks | 203 |
| abstract_inverted_index.obtained | 267 |
| abstract_inverted_index.original | 26 |
| abstract_inverted_index.outcome) | 220 |
| abstract_inverted_index.position | 7, 27, 46, 77, 218 |
| abstract_inverted_index.reports. | 255 |
| abstract_inverted_index.research | 59 |
| abstract_inverted_index.vascular | 34 |
| abstract_inverted_index.AdaBoost, | 151 |
| abstract_inverted_index.Automated | 41 |
| abstract_inverted_index.K-nearest | 153 |
| abstract_inverted_index.accuracy, | 162 |
| abstract_inverted_index.agreement | 195 |
| abstract_inverted_index.confirmed | 17 |
| abstract_inverted_index.correctly | 171 |
| abstract_inverted_index.detection | 42 |
| abstract_inverted_index.different | 138 |
| abstract_inverted_index.extremity | 91 |
| abstract_inverted_index.inclusion | 189 |
| abstract_inverted_index.intensive | 283 |
| abstract_inverted_index.locations | 112 |
| abstract_inverted_index.manually. | 193 |
| abstract_inverted_index.outcome). | 236 |
| abstract_inverted_index.performed | 127 |
| abstract_inverted_index.position. | 298 |
| abstract_inverted_index.primarily | 79 |
| abstract_inverted_index.radiology | 254 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Conclusion | 237 |
| abstract_inverted_index.Interrater | 194 |
| abstract_inverted_index.Objectives | 57 |
| abstract_inverted_index.accuracies | 205, 222, 269 |
| abstract_inverted_index.algorithms | 279 |
| abstract_inverted_index.anatomical | 111, 233, 248 |
| abstract_inverted_index.attempting | 228 |
| abstract_inverted_index.calculated | 161 |
| abstract_inverted_index.categorize | 172, 230 |
| abstract_inverted_index.classified | 108 |
| abstract_inverted_index.clinicians | 53, 294 |
| abstract_inverted_index.containing | 95 |
| abstract_inverted_index.critically | 3 |
| abstract_inverted_index.individual | 232 |
| abstract_inverted_index.neighbors) | 154 |
| abstract_inverted_index.noncentral | 55, 217 |
| abstract_inverted_index.precision, | 163 |
| abstract_inverted_index.processing | 65 |
| abstract_inverted_index.radiograph | 84 |
| abstract_inverted_index.supervised | 68, 155 |
| abstract_inverted_index.techniques | 72 |
| abstract_inverted_index.train/test | 130 |
| abstract_inverted_index.algorithm's | 168 |
| abstract_inverted_index.algorithms. | 157 |
| abstract_inverted_index.benchmarked | 133 |
| abstract_inverted_index.classifiers | 243 |
| abstract_inverted_index.frequently, | 18 |
| abstract_inverted_index.identifying | 211 |
| abstract_inverted_index.performance | 135 |
| abstract_inverted_index.radiographs | 185 |
| abstract_inverted_index.surrounding | 39 |
| abstract_inverted_index.(12-category | 235 |
| abstract_inverted_index.Implementing | 277 |
| abstract_inverted_index.Radiographs, | 94 |
| abstract_inverted_index.classifiers, | 258 |
| abstract_inverted_index.hyperosmolar | 33 |
| abstract_inverted_index.peripherally | 10 |
| abstract_inverted_index.predictions. | 276 |
| abstract_inverted_index.automatically | 245 |
| abstract_inverted_index.extravasation | 37 |
| abstract_inverted_index.optimization, | 159 |
| abstract_inverted_index.radiologist's | 116 |
| abstract_inverted_index.categorization, | 125 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.84092846 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |