Machine learning for predicting severe dengue, Puerto Rico Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/2024.11.15.24317377
Background Distinguishing between non-severe and severe dengue is crucial for timely intervention and reducing morbidity and mortality. Traditional warning signs recommended by the World Health Organization (WHO) offer a practical approach for clinicians but have limitations in sensitivity and specificity. This study evaluates the performance of machine learning (ML) models compared to WHO- recommended warning signs in predicting severe dengue among laboratory-confirmed cases in Puerto Rico. Methods We analyzed data from Puerto Rico’s Sentinel Enhanced Dengue Surveillance System (May 2012–August 2024), using 40 clinical, demographic, and laboratory variables. Nine ML models, including Decision Trees, K-Nearest Neighbors, Naïve Bayes, Support Vector Machines, Artificial Neural Networks, AdaBoost, CatBoost, LightGBM, and XGBoost, were trained using 5-fold cross-validation and evaluated with area under the receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). A subanalysis excluded hemoconcentration and leukopenia to assess performance in resource-limited settings. An AUC-ROC value of 0.5 indicates no discriminative power, while a value closer to 1.0 reflects better performance. Results Among the 1,708 laboratory-confirmed dengue cases, 24.3% were classified as severe. Gradient boosting algorithms achieved the highest predictive performance, with AUC-ROC values exceeding 94% for CatBoost, LightGBM, and XGBoost. Feature importance analysis identified hemoconcentration (≥20% increase during illness or ≥20% above baseline for age and sex), leukopenia (white blood cell count <4,000/mm³), and timing of presentation to a healthcare facility at 4–6 days post-symptom onset as key predictors. Excluding hemoconcentration and leukopenia did not significantly affect model performance. Individual warning signs like abdominal pain and restlessness had sensitivities of 79.0% and 64.6%, but lower specificities of 48.4% and 59.1%, respectively. Combining ≥3 warning signs improved specificity (80.9%) while maintaining moderate sensitivity (78.6%), resulting in an AUC-ROC of 74.0%. Conclusions ML models, especially gradient boosting algorithms, outperformed traditional warning signs in predicting severe dengue. Integrating these models into clinical decision-support tools could help clinicians better identify high-risk patients, guiding timely interventions like hospitalization, closer monitoring, or the administration of intravenous fluids. The subanalysis excluding hemoconcentration confirmed the models’ applicability in resource-limited settings, where access to laboratory data may be limited.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2024.11.15.24317377
- OA Status
- green
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404404898
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404404898Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2024.11.15.24317377Digital Object Identifier
- Title
-
Machine learning for predicting severe dengue, Puerto RicoWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-15Full publication date if available
- Authors
-
Zachary J. Madewell, Dania M. Rodríguez, Maile T. Phillips, Vanessa Rivera‐Amill, Gabriela Paz–Bailey, Laura E. Adams, Joshua M. WongList of authors in order
- Landing page
-
https://doi.org/10.1101/2024.11.15.24317377Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1101/2024.11.15.24317377Direct OA link when available
- Concepts
-
Dengue fever, Artificial intelligence, Geography, Psychology, Computer science, Virology, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404404898 |
|---|---|
| doi | https://doi.org/10.1101/2024.11.15.24317377 |
| ids.doi | https://doi.org/10.1101/2024.11.15.24317377 |
| ids.openalex | https://openalex.org/W4404404898 |
| fwci | |
| type | preprint |
| title | Machine learning for predicting severe dengue, Puerto Rico |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10166 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9865000247955322 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2739 |
| topics[0].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[0].display_name | Mosquito-borne diseases and control |
| topics[1].id | https://openalex.org/T11819 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9236000180244446 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2713 |
| topics[1].subfield.display_name | Epidemiology |
| topics[1].display_name | Data-Driven Disease Surveillance |
| topics[2].id | https://openalex.org/T14053 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9125999808311462 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3312 |
| topics[2].subfield.display_name | Sociology and Political Science |
| topics[2].display_name | Dengue and Mosquito Control Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C533803919 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8636682033538818 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q30953 |
| concepts[0].display_name | Dengue fever |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.3679094612598419 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C205649164 |
| concepts[2].level | 0 |
| concepts[2].score | 0.35721075534820557 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[2].display_name | Geography |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.33882319927215576 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.30111032724380493 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C159047783 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2153947651386261 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[5].display_name | Virology |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.17745241522789001 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/dengue-fever |
| keywords[0].score | 0.8636682033538818 |
| keywords[0].display_name | Dengue fever |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.3679094612598419 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/geography |
| keywords[2].score | 0.35721075534820557 |
| keywords[2].display_name | Geography |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.33882319927215576 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.30111032724380493 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/virology |
| keywords[5].score | 0.2153947651386261 |
| keywords[5].display_name | Virology |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.17745241522789001 |
| keywords[6].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1101/2024.11.15.24317377 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | public-domain |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/public-domain |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2024.11.15.24317377 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5050825770 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5667-9660 |
| authorships[0].author.display_name | Zachary J. Madewell |
| authorships[0].countries | PR, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1289490764, https://openalex.org/I2802088768 |
| authorships[0].affiliations[0].raw_affiliation_string | Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico |
| authorships[0].institutions[0].id | https://openalex.org/I2802088768 |
| authorships[0].institutions[0].ror | https://ror.org/00g3xxn90 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I2802088768 |
| authorships[0].institutions[0].country_code | PR |
| authorships[0].institutions[0].display_name | Puerto Rico Department of Health |
| authorships[0].institutions[1].id | https://openalex.org/I1289490764 |
| authorships[0].institutions[1].ror | https://ror.org/042twtr12 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I1289490764, https://openalex.org/I1299022934 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Centers for Disease Control and Prevention |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zachary J. Madewell |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico |
| authorships[1].author.id | https://openalex.org/A5083782753 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2837-3629 |
| authorships[1].author.display_name | Dania M. Rodríguez |
| authorships[1].countries | PR, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1289490764, https://openalex.org/I2802088768 |
| authorships[1].affiliations[0].raw_affiliation_string | Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico |
| authorships[1].institutions[0].id | https://openalex.org/I2802088768 |
| authorships[1].institutions[0].ror | https://ror.org/00g3xxn90 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I2802088768 |
| authorships[1].institutions[0].country_code | PR |
| authorships[1].institutions[0].display_name | Puerto Rico Department of Health |
| authorships[1].institutions[1].id | https://openalex.org/I1289490764 |
| authorships[1].institutions[1].ror | https://ror.org/042twtr12 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I1289490764, https://openalex.org/I1299022934 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Centers for Disease Control and Prevention |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dania M. Rodriguez |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico |
| authorships[2].author.id | https://openalex.org/A5013842155 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6952-0440 |
| authorships[2].author.display_name | Maile T. Phillips |
| authorships[2].countries | PR, US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1289490764, https://openalex.org/I2802088768 |
| authorships[2].affiliations[0].raw_affiliation_string | Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico |
| authorships[2].institutions[0].id | https://openalex.org/I2802088768 |
| authorships[2].institutions[0].ror | https://ror.org/00g3xxn90 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I2802088768 |
| authorships[2].institutions[0].country_code | PR |
| authorships[2].institutions[0].display_name | Puerto Rico Department of Health |
| authorships[2].institutions[1].id | https://openalex.org/I1289490764 |
| authorships[2].institutions[1].ror | https://ror.org/042twtr12 |
| authorships[2].institutions[1].type | government |
| authorships[2].institutions[1].lineage | https://openalex.org/I1289490764, https://openalex.org/I1299022934 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | Centers for Disease Control and Prevention |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Maile B. Thayer |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico |
| authorships[3].author.id | https://openalex.org/A5038883557 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4810-0871 |
| authorships[3].author.display_name | Vanessa Rivera‐Amill |
| authorships[3].countries | PR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I163086451 |
| authorships[3].affiliations[0].raw_affiliation_string | Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico |
| authorships[3].institutions[0].id | https://openalex.org/I163086451 |
| authorships[3].institutions[0].ror | https://ror.org/0022qva30 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I163086451 |
| authorships[3].institutions[0].country_code | PR |
| authorships[3].institutions[0].display_name | Ponce Health Sciences University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Vanessa Rivera-Amill |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico |
| authorships[4].author.id | https://openalex.org/A5024434281 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8478-4911 |
| authorships[4].author.display_name | Gabriela Paz–Bailey |
| authorships[4].countries | PR, US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1289490764, https://openalex.org/I2802088768 |
| authorships[4].affiliations[0].raw_affiliation_string | Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico |
| authorships[4].institutions[0].id | https://openalex.org/I2802088768 |
| authorships[4].institutions[0].ror | https://ror.org/00g3xxn90 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I2802088768 |
| authorships[4].institutions[0].country_code | PR |
| authorships[4].institutions[0].display_name | Puerto Rico Department of Health |
| authorships[4].institutions[1].id | https://openalex.org/I1289490764 |
| authorships[4].institutions[1].ror | https://ror.org/042twtr12 |
| authorships[4].institutions[1].type | government |
| authorships[4].institutions[1].lineage | https://openalex.org/I1289490764, https://openalex.org/I1299022934 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | Centers for Disease Control and Prevention |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gabriela Paz-Bailey |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico |
| authorships[5].author.id | https://openalex.org/A5076485059 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4698-7720 |
| authorships[5].author.display_name | Laura E. Adams |
| authorships[5].countries | PR, US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1289490764, https://openalex.org/I2802088768 |
| authorships[5].affiliations[0].raw_affiliation_string | Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico |
| authorships[5].institutions[0].id | https://openalex.org/I2802088768 |
| authorships[5].institutions[0].ror | https://ror.org/00g3xxn90 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I2802088768 |
| authorships[5].institutions[0].country_code | PR |
| authorships[5].institutions[0].display_name | Puerto Rico Department of Health |
| authorships[5].institutions[1].id | https://openalex.org/I1289490764 |
| authorships[5].institutions[1].ror | https://ror.org/042twtr12 |
| authorships[5].institutions[1].type | government |
| authorships[5].institutions[1].lineage | https://openalex.org/I1289490764, https://openalex.org/I1299022934 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | Centers for Disease Control and Prevention |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Laura E. Adams |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico |
| authorships[6].author.id | https://openalex.org/A5012691076 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1062-0049 |
| authorships[6].author.display_name | Joshua M. Wong |
| authorships[6].countries | PR, US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1289490764, https://openalex.org/I2802088768 |
| authorships[6].affiliations[0].raw_affiliation_string | Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico |
| authorships[6].institutions[0].id | https://openalex.org/I2802088768 |
| authorships[6].institutions[0].ror | https://ror.org/00g3xxn90 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I2802088768 |
| authorships[6].institutions[0].country_code | PR |
| authorships[6].institutions[0].display_name | Puerto Rico Department of Health |
| authorships[6].institutions[1].id | https://openalex.org/I1289490764 |
| authorships[6].institutions[1].ror | https://ror.org/042twtr12 |
| authorships[6].institutions[1].type | government |
| authorships[6].institutions[1].lineage | https://openalex.org/I1289490764, https://openalex.org/I1299022934 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | Centers for Disease Control and Prevention |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Joshua M. Wong |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1101/2024.11.15.24317377 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine learning for predicting severe dengue, Puerto Rico |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10166 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9865000247955322 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2739 |
| primary_topic.subfield.display_name | Public Health, Environmental and Occupational Health |
| primary_topic.display_name | Mosquito-borne diseases and control |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4381663654, https://openalex.org/W2068304598, https://openalex.org/W2807168341, https://openalex.org/W2725116932, https://openalex.org/W2509622515, https://openalex.org/W1965818759, https://openalex.org/W2560223662 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2024.11.15.24317377 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2024.11.15.24317377 |
| primary_location.id | doi:10.1101/2024.11.15.24317377 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | public-domain |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/public-domain |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2024.11.15.24317377 |
| publication_date | 2024-11-15 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2131222241, https://openalex.org/W2899736836, https://openalex.org/W4367676476, https://openalex.org/W4403819125, https://openalex.org/W2892278633, https://openalex.org/W2088216889, https://openalex.org/W2105987140, https://openalex.org/W2125879085, https://openalex.org/W1966572750, https://openalex.org/W3195331389, https://openalex.org/W4324141948, https://openalex.org/W2529957341, https://openalex.org/W4399113451, https://openalex.org/W2805526720, https://openalex.org/W4309529162, https://openalex.org/W4226105450, https://openalex.org/W2755139046, https://openalex.org/W3207679345, https://openalex.org/W3133408366, https://openalex.org/W3211109166, https://openalex.org/W4224137274, https://openalex.org/W4308627565, https://openalex.org/W1987552279, https://openalex.org/W2088252378, https://openalex.org/W2896556344, https://openalex.org/W2168020168, https://openalex.org/W2987201163, https://openalex.org/W4389513437, https://openalex.org/W1981276685, https://openalex.org/W2582743722, https://openalex.org/W2328176404, https://openalex.org/W2898158197, https://openalex.org/W2095805447, https://openalex.org/W4386898788, https://openalex.org/W4206827170, https://openalex.org/W4388379847, https://openalex.org/W4404365310, https://openalex.org/W4389616681, https://openalex.org/W4220945150, https://openalex.org/W4211196057, https://openalex.org/W4223487063, https://openalex.org/W3085464968, https://openalex.org/W3101689426, https://openalex.org/W3081125651 |
| referenced_works_count | 44 |
| abstract_inverted_index.A | 137 |
| abstract_inverted_index.a | 29, 159, 225 |
| abstract_inverted_index.40 | 83 |
| abstract_inverted_index.An | 149 |
| abstract_inverted_index.ML | 90, 287 |
| abstract_inverted_index.We | 68 |
| abstract_inverted_index.an | 282 |
| abstract_inverted_index.as | 177, 233 |
| abstract_inverted_index.at | 228 |
| abstract_inverted_index.be | 345 |
| abstract_inverted_index.by | 22 |
| abstract_inverted_index.in | 37, 57, 64, 146, 281, 297, 336 |
| abstract_inverted_index.is | 8 |
| abstract_inverted_index.no | 155 |
| abstract_inverted_index.of | 46, 152, 222, 256, 263, 284, 325 |
| abstract_inverted_index.or | 206, 322 |
| abstract_inverted_index.to | 52, 143, 162, 224, 341 |
| abstract_inverted_index.0.5 | 153 |
| abstract_inverted_index.1.0 | 163 |
| abstract_inverted_index.94% | 191 |
| abstract_inverted_index.The | 328 |
| abstract_inverted_index.age | 211 |
| abstract_inverted_index.and | 5, 13, 16, 39, 86, 108, 115, 132, 141, 195, 212, 220, 238, 252, 258, 265 |
| abstract_inverted_index.but | 34, 260 |
| abstract_inverted_index.did | 240 |
| abstract_inverted_index.for | 10, 32, 192, 210 |
| abstract_inverted_index.had | 254 |
| abstract_inverted_index.key | 234 |
| abstract_inverted_index.may | 344 |
| abstract_inverted_index.not | 241 |
| abstract_inverted_index.the | 23, 44, 120, 169, 183, 323, 333 |
| abstract_inverted_index.(ML) | 49 |
| abstract_inverted_index.(May | 79 |
| abstract_inverted_index.Nine | 89 |
| abstract_inverted_index.This | 41 |
| abstract_inverted_index.WHO- | 53 |
| abstract_inverted_index.area | 118 |
| abstract_inverted_index.cell | 217 |
| abstract_inverted_index.data | 70, 343 |
| abstract_inverted_index.days | 230 |
| abstract_inverted_index.from | 71 |
| abstract_inverted_index.have | 35 |
| abstract_inverted_index.help | 309 |
| abstract_inverted_index.into | 304 |
| abstract_inverted_index.like | 249, 318 |
| abstract_inverted_index.pain | 251 |
| abstract_inverted_index.were | 110, 175 |
| abstract_inverted_index.with | 117, 187 |
| abstract_inverted_index.≥3 | 269 |
| abstract_inverted_index.(WHO) | 27 |
| abstract_inverted_index.1,708 | 170 |
| abstract_inverted_index.24.3% | 174 |
| abstract_inverted_index.48.4% | 264 |
| abstract_inverted_index.4–6 | 229 |
| abstract_inverted_index.79.0% | 257 |
| abstract_inverted_index.Among | 168 |
| abstract_inverted_index.Rico. | 66 |
| abstract_inverted_index.World | 24 |
| abstract_inverted_index.above | 208 |
| abstract_inverted_index.among | 61 |
| abstract_inverted_index.blood | 216 |
| abstract_inverted_index.cases | 63 |
| abstract_inverted_index.could | 308 |
| abstract_inverted_index.count | 218 |
| abstract_inverted_index.curve | 124 |
| abstract_inverted_index.lower | 261 |
| abstract_inverted_index.model | 244 |
| abstract_inverted_index.offer | 28 |
| abstract_inverted_index.onset | 232 |
| abstract_inverted_index.sex), | 213 |
| abstract_inverted_index.signs | 20, 56, 248, 271, 296 |
| abstract_inverted_index.study | 42 |
| abstract_inverted_index.these | 302 |
| abstract_inverted_index.tools | 307 |
| abstract_inverted_index.under | 119 |
| abstract_inverted_index.using | 82, 112 |
| abstract_inverted_index.value | 130, 135, 151, 160 |
| abstract_inverted_index.where | 339 |
| abstract_inverted_index.while | 158, 275 |
| abstract_inverted_index.(NPV). | 136 |
| abstract_inverted_index.(PPV), | 131 |
| abstract_inverted_index.(white | 215 |
| abstract_inverted_index.2024), | 81 |
| abstract_inverted_index.5-fold | 113 |
| abstract_inverted_index.59.1%, | 266 |
| abstract_inverted_index.64.6%, | 259 |
| abstract_inverted_index.74.0%. | 285 |
| abstract_inverted_index.Bayes, | 98 |
| abstract_inverted_index.Dengue | 76 |
| abstract_inverted_index.Health | 25 |
| abstract_inverted_index.Naïve | 97 |
| abstract_inverted_index.Neural | 103 |
| abstract_inverted_index.Puerto | 65, 72 |
| abstract_inverted_index.System | 78 |
| abstract_inverted_index.Trees, | 94 |
| abstract_inverted_index.Vector | 100 |
| abstract_inverted_index.access | 340 |
| abstract_inverted_index.affect | 243 |
| abstract_inverted_index.assess | 144 |
| abstract_inverted_index.better | 165, 311 |
| abstract_inverted_index.cases, | 173 |
| abstract_inverted_index.closer | 161, 320 |
| abstract_inverted_index.dengue | 7, 60, 172 |
| abstract_inverted_index.during | 204 |
| abstract_inverted_index.models | 50, 303 |
| abstract_inverted_index.power, | 157 |
| abstract_inverted_index.severe | 6, 59, 299 |
| abstract_inverted_index.timely | 11, 316 |
| abstract_inverted_index.timing | 221 |
| abstract_inverted_index.values | 189 |
| abstract_inverted_index.≥20% | 207 |
| abstract_inverted_index.(80.9%) | 274 |
| abstract_inverted_index.(≥20% | 202 |
| abstract_inverted_index.AUC-ROC | 150, 188, 283 |
| abstract_inverted_index.Feature | 197 |
| abstract_inverted_index.Methods | 67 |
| abstract_inverted_index.Results | 167 |
| abstract_inverted_index.Support | 99 |
| abstract_inverted_index.between | 3 |
| abstract_inverted_index.crucial | 9 |
| abstract_inverted_index.dengue. | 300 |
| abstract_inverted_index.fluids. | 327 |
| abstract_inverted_index.guiding | 315 |
| abstract_inverted_index.highest | 184 |
| abstract_inverted_index.illness | 205 |
| abstract_inverted_index.machine | 47 |
| abstract_inverted_index.models, | 91, 288 |
| abstract_inverted_index.severe. | 178 |
| abstract_inverted_index.trained | 111 |
| abstract_inverted_index.warning | 19, 55, 247, 270, 295 |
| abstract_inverted_index.(78.6%), | 279 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Decision | 93 |
| abstract_inverted_index.Enhanced | 75 |
| abstract_inverted_index.Gradient | 179 |
| abstract_inverted_index.Rico’s | 73 |
| abstract_inverted_index.Sentinel | 74 |
| abstract_inverted_index.XGBoost, | 109 |
| abstract_inverted_index.XGBoost. | 196 |
| abstract_inverted_index.achieved | 182 |
| abstract_inverted_index.analysis | 199 |
| abstract_inverted_index.analyzed | 69 |
| abstract_inverted_index.approach | 31 |
| abstract_inverted_index.baseline | 209 |
| abstract_inverted_index.boosting | 180, 291 |
| abstract_inverted_index.clinical | 305 |
| abstract_inverted_index.compared | 51 |
| abstract_inverted_index.excluded | 139 |
| abstract_inverted_index.facility | 227 |
| abstract_inverted_index.gradient | 290 |
| abstract_inverted_index.identify | 312 |
| abstract_inverted_index.improved | 272 |
| abstract_inverted_index.increase | 203 |
| abstract_inverted_index.learning | 48 |
| abstract_inverted_index.limited. | 346 |
| abstract_inverted_index.moderate | 277 |
| abstract_inverted_index.negative | 133 |
| abstract_inverted_index.positive | 128 |
| abstract_inverted_index.receiver | 121 |
| abstract_inverted_index.reducing | 14 |
| abstract_inverted_index.reflects | 164 |
| abstract_inverted_index.AdaBoost, | 105 |
| abstract_inverted_index.CatBoost, | 106, 193 |
| abstract_inverted_index.Combining | 268 |
| abstract_inverted_index.Excluding | 236 |
| abstract_inverted_index.K-Nearest | 95 |
| abstract_inverted_index.LightGBM, | 107, 194 |
| abstract_inverted_index.Machines, | 101 |
| abstract_inverted_index.Networks, | 104 |
| abstract_inverted_index.abdominal | 250 |
| abstract_inverted_index.clinical, | 84 |
| abstract_inverted_index.confirmed | 332 |
| abstract_inverted_index.evaluated | 116 |
| abstract_inverted_index.evaluates | 43 |
| abstract_inverted_index.exceeding | 190 |
| abstract_inverted_index.excluding | 330 |
| abstract_inverted_index.high-risk | 313 |
| abstract_inverted_index.including | 92 |
| abstract_inverted_index.indicates | 154 |
| abstract_inverted_index.models’ | 334 |
| abstract_inverted_index.morbidity | 15 |
| abstract_inverted_index.operating | 122 |
| abstract_inverted_index.patients, | 314 |
| abstract_inverted_index.practical | 30 |
| abstract_inverted_index.resulting | 280 |
| abstract_inverted_index.settings, | 338 |
| abstract_inverted_index.settings. | 148 |
| abstract_inverted_index.(AUC-ROC), | 125 |
| abstract_inverted_index.Artificial | 102 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Individual | 246 |
| abstract_inverted_index.Neighbors, | 96 |
| abstract_inverted_index.algorithms | 181 |
| abstract_inverted_index.classified | 176 |
| abstract_inverted_index.clinicians | 33, 310 |
| abstract_inverted_index.especially | 289 |
| abstract_inverted_index.healthcare | 226 |
| abstract_inverted_index.identified | 200 |
| abstract_inverted_index.importance | 198 |
| abstract_inverted_index.laboratory | 87, 342 |
| abstract_inverted_index.leukopenia | 142, 214, 239 |
| abstract_inverted_index.mortality. | 17 |
| abstract_inverted_index.non-severe | 4 |
| abstract_inverted_index.predicting | 58, 298 |
| abstract_inverted_index.predictive | 129, 134, 185 |
| abstract_inverted_index.variables. | 88 |
| abstract_inverted_index.Conclusions | 286 |
| abstract_inverted_index.Integrating | 301 |
| abstract_inverted_index.Traditional | 18 |
| abstract_inverted_index.algorithms, | 292 |
| abstract_inverted_index.intravenous | 326 |
| abstract_inverted_index.limitations | 36 |
| abstract_inverted_index.maintaining | 276 |
| abstract_inverted_index.monitoring, | 321 |
| abstract_inverted_index.performance | 45, 145 |
| abstract_inverted_index.predictors. | 235 |
| abstract_inverted_index.recommended | 21, 54 |
| abstract_inverted_index.sensitivity | 38, 278 |
| abstract_inverted_index.specificity | 273 |
| abstract_inverted_index.subanalysis | 138, 329 |
| abstract_inverted_index.traditional | 294 |
| abstract_inverted_index.Organization | 26 |
| abstract_inverted_index.Surveillance | 77 |
| abstract_inverted_index.demographic, | 85 |
| abstract_inverted_index.intervention | 12 |
| abstract_inverted_index.outperformed | 293 |
| abstract_inverted_index.performance, | 186 |
| abstract_inverted_index.performance. | 166, 245 |
| abstract_inverted_index.post-symptom | 231 |
| abstract_inverted_index.presentation | 223 |
| abstract_inverted_index.restlessness | 253 |
| abstract_inverted_index.sensitivity, | 126 |
| abstract_inverted_index.specificity, | 127 |
| abstract_inverted_index.specificity. | 40 |
| abstract_inverted_index.2012–August | 80 |
| abstract_inverted_index.applicability | 335 |
| abstract_inverted_index.interventions | 317 |
| abstract_inverted_index.respectively. | 267 |
| abstract_inverted_index.sensitivities | 255 |
| abstract_inverted_index.significantly | 242 |
| abstract_inverted_index.specificities | 262 |
| abstract_inverted_index.Distinguishing | 2 |
| abstract_inverted_index.administration | 324 |
| abstract_inverted_index.characteristic | 123 |
| abstract_inverted_index.discriminative | 156 |
| abstract_inverted_index.<4,000/mm³), | 219 |
| abstract_inverted_index.cross-validation | 114 |
| abstract_inverted_index.decision-support | 306 |
| abstract_inverted_index.hospitalization, | 319 |
| abstract_inverted_index.resource-limited | 147, 337 |
| abstract_inverted_index.hemoconcentration | 140, 201, 237, 331 |
| abstract_inverted_index.laboratory-confirmed | 62, 171 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5050825770 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I1289490764, https://openalex.org/I2802088768 |
| citation_normalized_percentile.value | 0.35283974 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |