Machine Learning for Risk Prediction Article Swipe
Collin M. Stultz
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.jacadv.2023.100552
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.jacadv.2023.100552
[Figure: see text]
Related Topics
Metadata
- Type
- editorial
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.jacadv.2023.100552
- OA Status
- diamond
- References
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386064468
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386064468Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.jacadv.2023.100552Digital Object Identifier
- Title
-
Machine Learning for Risk PredictionWork title
- Type
-
editorialOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-22Full publication date if available
- Authors
-
Collin M. StultzList of authors in order
- Landing page
-
https://doi.org/10.1016/j.jacadv.2023.100552Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.jacadv.2023.100552Direct OA link when available
- Concepts
-
Computer science, Machine learning, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
9Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386064468 |
|---|---|
| doi | https://doi.org/10.1016/j.jacadv.2023.100552 |
| ids.doi | https://doi.org/10.1016/j.jacadv.2023.100552 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38939502 |
| ids.openalex | https://openalex.org/W4386064468 |
| fwci | 0.0 |
| type | editorial |
| title | Machine Learning for Risk Prediction |
| biblio.issue | 7 |
| biblio.volume | 2 |
| biblio.last_page | 100552 |
| biblio.first_page | 100552 |
| topics[0].id | https://openalex.org/T14374 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9789000153541565 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods in Epidemiology |
| topics[1].id | https://openalex.org/T11490 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.977400004863739 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Hydrological Forecasting Using AI |
| topics[2].id | https://openalex.org/T11396 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9656000137329102 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3605 |
| topics[2].subfield.display_name | Health Information Management |
| topics[2].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5346111059188843 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.48222458362579346 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4808157682418823 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5346111059188843 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.48222458362579346 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4808157682418823 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1016/j.jacadv.2023.100552 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4220651314 |
| locations[0].source.issn | 2772-963X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2772-963X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | JACC Advances |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | JACC: Advances |
| locations[0].landing_page_url | https://doi.org/10.1016/j.jacadv.2023.100552 |
| locations[1].id | pmid:38939502 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | JACC. Advances |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38939502 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11198289 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | JACC Adv |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11198289 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5024941370 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3415-242X |
| authorships[0].author.display_name | Collin M. Stultz |
| authorships[0].countries | US |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, and Institute for Medical Engineering & Science, MIT, Cambridge, Massachusetts, USA |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I158133745 |
| authorships[0].affiliations[1].raw_affiliation_string | Division of Cardiology, MGH, Boston, Massachusetts, USA |
| authorships[0].institutions[0].id | https://openalex.org/I158133745 |
| authorships[0].institutions[0].ror | https://ror.org/037msyf12 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I158133745 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | MGH Institute of Health Professions |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Collin M. Stultz |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, and Institute for Medical Engineering & Science, MIT, Cambridge, Massachusetts, USA, Division of Cardiology, MGH, Boston, Massachusetts, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.jacadv.2023.100552 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-08-23T00:00:00 |
| display_name | Machine Learning for Risk Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14374 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9789000153541565 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods in Epidemiology |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1016/j.jacadv.2023.100552 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4220651314 |
| best_oa_location.source.issn | 2772-963X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2772-963X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | JACC Advances |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | JACC: Advances |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.jacadv.2023.100552 |
| primary_location.id | doi:10.1016/j.jacadv.2023.100552 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4220651314 |
| primary_location.source.issn | 2772-963X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2772-963X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | JACC Advances |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | JACC: Advances |
| primary_location.landing_page_url | https://doi.org/10.1016/j.jacadv.2023.100552 |
| publication_date | 2023-08-22 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6855091904, https://openalex.org/W2985220169, https://openalex.org/W2122435621, https://openalex.org/W2801544532, https://openalex.org/W2599592635, https://openalex.org/W1884856959, https://openalex.org/W2090119255, https://openalex.org/W2025619691, https://openalex.org/W4386054412 |
| referenced_works_count | 9 |
| abstract_inverted_index.see | 1 |
| abstract_inverted_index.text] | 2 |
| abstract_inverted_index.[Figure: | 0 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5024941370 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I158133745 |
| citation_normalized_percentile.value | 0.13446568 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |