Machine Learning for Surrogate Modeling in Multi-Objective Wing Optimization Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17904576
This repository contains the code and data developed for a research project supported by São Paulo Research Foundation (FAPESP) under grant number 2024/07804-2 .focusing on aerodynamic multiobjective optimization of subsonic wings using surrogate models based on machine learning. The dataset includes over 2.5 million wing geometries simulated via the Vortex Lattice Method (VLM) with varying geometric parameters and 1.4 million wing geometries simulated via Nonlinear Lifting Line Theory (N-LLT). Machine learning models, including Multi-Layer Perceptrons (MLP), were trained to predict aerodynamic coefficients (CL, CD, CM) with high accuracy, enabling reductions in computational time by approximately three orders of magnitude compared to direct VLM and NLLT simulations. These surrogate models were integrated with optimization algorithms such as Dual Annealing and Genetic Algorithms to perform multiobjective aerodynamic design optimization efficiently. The code facilitates data processing, surrogate model training, aerodynamic performance prediction, and multiobjective optimization workflows, demonstrating the potential of machine learning surrogates in conceptual aircraft design where computational efficiency is critical.
Related Topics
- Type
- other
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.17904576
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7114922362
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7114922362Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17904576Digital Object Identifier
- Title
-
Machine Learning for Surrogate Modeling in Multi-Objective Wing OptimizationWork title
- Type
-
otherOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-11Full publication date if available
- Authors
-
Clemente Carrari, Gabriel, Pereira Gouveia da Silva, GabrielList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17904576Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17904576Direct OA link when available
- Concepts
-
Surrogate model, Aerodynamics, Artificial intelligence, Machine learning, Computer science, Genetic algorithm, Multi-objective optimization, Perceptron, Stability derivatives, Mathematical optimization, Extreme learning machine, Wing, Shape optimization, Engineering, Algorithm, Code (set theory), Global optimization, Computation, Simulated annealing, Optimization problem, Uncertainty quantification, Evolutionary algorithm, Genetic programming, Artificial neural network, Computational fluid dynamics, Support vector machine, Stability (learning theory), Nonlinear system, Multidisciplinary design optimization, Optimal designTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7114922362 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17904576 |
| ids.doi | https://doi.org/10.5281/zenodo.17904576 |
| ids.openalex | https://openalex.org/W7114922362 |
| fwci | |
| type | other |
| title | Machine Learning for Surrogate Modeling in Multi-Objective Wing Optimization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C131675550 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7732753753662109 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7646884 |
| concepts[0].display_name | Surrogate model |
| concepts[1].id | https://openalex.org/C13393347 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6974455714225769 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8424 |
| concepts[1].display_name | Aerodynamics |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5492609739303589 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5368185043334961 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5154037475585938 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C8880873 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4649835526943207 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q187787 |
| concepts[5].display_name | Genetic algorithm |
| concepts[6].id | https://openalex.org/C68781425 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4330494999885559 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2052203 |
| concepts[6].display_name | Multi-objective optimization |
| concepts[7].id | https://openalex.org/C60908668 |
| concepts[7].level | 3 |
| concepts[7].score | 0.42416632175445557 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q690207 |
| concepts[7].display_name | Perceptron |
| concepts[8].id | https://openalex.org/C59681308 |
| concepts[8].level | 3 |
| concepts[8].score | 0.40443453192710876 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7595727 |
| concepts[8].display_name | Stability derivatives |
| concepts[9].id | https://openalex.org/C126255220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.404188871383667 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[9].display_name | Mathematical optimization |
| concepts[10].id | https://openalex.org/C2780150128 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4020857512950897 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21948731 |
| concepts[10].display_name | Extreme learning machine |
| concepts[11].id | https://openalex.org/C97257150 |
| concepts[11].level | 2 |
| concepts[11].score | 0.38034239411354065 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q161358 |
| concepts[11].display_name | Wing |
| concepts[12].id | https://openalex.org/C29513896 |
| concepts[12].level | 3 |
| concepts[12].score | 0.358621209859848 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7489239 |
| concepts[12].display_name | Shape optimization |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.35278037190437317 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.34402623772621155 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C2776760102 |
| concepts[15].level | 3 |
| concepts[15].score | 0.3352918028831482 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[15].display_name | Code (set theory) |
| concepts[16].id | https://openalex.org/C164752517 |
| concepts[16].level | 2 |
| concepts[16].score | 0.333818256855011 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5570875 |
| concepts[16].display_name | Global optimization |
| concepts[17].id | https://openalex.org/C45374587 |
| concepts[17].level | 2 |
| concepts[17].score | 0.32972803711891174 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[17].display_name | Computation |
| concepts[18].id | https://openalex.org/C126980161 |
| concepts[18].level | 2 |
| concepts[18].score | 0.3134250342845917 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q863783 |
| concepts[18].display_name | Simulated annealing |
| concepts[19].id | https://openalex.org/C137836250 |
| concepts[19].level | 2 |
| concepts[19].score | 0.3105476498603821 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q984063 |
| concepts[19].display_name | Optimization problem |
| concepts[20].id | https://openalex.org/C32230216 |
| concepts[20].level | 2 |
| concepts[20].score | 0.2980321943759918 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7882499 |
| concepts[20].display_name | Uncertainty quantification |
| concepts[21].id | https://openalex.org/C159149176 |
| concepts[21].level | 2 |
| concepts[21].score | 0.2980012893676758 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q14489129 |
| concepts[21].display_name | Evolutionary algorithm |
| concepts[22].id | https://openalex.org/C110332635 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2973567247390747 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q629498 |
| concepts[22].display_name | Genetic programming |
| concepts[23].id | https://openalex.org/C50644808 |
| concepts[23].level | 2 |
| concepts[23].score | 0.29650411009788513 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[23].display_name | Artificial neural network |
| concepts[24].id | https://openalex.org/C1633027 |
| concepts[24].level | 2 |
| concepts[24].score | 0.28628039360046387 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q815820 |
| concepts[24].display_name | Computational fluid dynamics |
| concepts[25].id | https://openalex.org/C12267149 |
| concepts[25].level | 2 |
| concepts[25].score | 0.28619834780693054 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[25].display_name | Support vector machine |
| concepts[26].id | https://openalex.org/C112972136 |
| concepts[26].level | 2 |
| concepts[26].score | 0.279560923576355 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[26].display_name | Stability (learning theory) |
| concepts[27].id | https://openalex.org/C158622935 |
| concepts[27].level | 2 |
| concepts[27].score | 0.2687288820743561 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[27].display_name | Nonlinear system |
| concepts[28].id | https://openalex.org/C28442783 |
| concepts[28].level | 3 |
| concepts[28].score | 0.2648284435272217 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q3354474 |
| concepts[28].display_name | Multidisciplinary design optimization |
| concepts[29].id | https://openalex.org/C186394612 |
| concepts[29].level | 2 |
| concepts[29].score | 0.2552313506603241 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q7098942 |
| concepts[29].display_name | Optimal design |
| keywords[0].id | https://openalex.org/keywords/surrogate-model |
| keywords[0].score | 0.7732753753662109 |
| keywords[0].display_name | Surrogate model |
| keywords[1].id | https://openalex.org/keywords/aerodynamics |
| keywords[1].score | 0.6974455714225769 |
| keywords[1].display_name | Aerodynamics |
| keywords[2].id | https://openalex.org/keywords/genetic-algorithm |
| keywords[2].score | 0.4649835526943207 |
| keywords[2].display_name | Genetic algorithm |
| keywords[3].id | https://openalex.org/keywords/multi-objective-optimization |
| keywords[3].score | 0.4330494999885559 |
| keywords[3].display_name | Multi-objective optimization |
| keywords[4].id | https://openalex.org/keywords/perceptron |
| keywords[4].score | 0.42416632175445557 |
| keywords[4].display_name | Perceptron |
| keywords[5].id | https://openalex.org/keywords/stability-derivatives |
| keywords[5].score | 0.40443453192710876 |
| keywords[5].display_name | Stability derivatives |
| keywords[6].id | https://openalex.org/keywords/extreme-learning-machine |
| keywords[6].score | 0.4020857512950897 |
| keywords[6].display_name | Extreme learning machine |
| keywords[7].id | https://openalex.org/keywords/wing |
| keywords[7].score | 0.38034239411354065 |
| keywords[7].display_name | Wing |
| keywords[8].id | https://openalex.org/keywords/shape-optimization |
| keywords[8].score | 0.358621209859848 |
| keywords[8].display_name | Shape optimization |
| language | en |
| locations[0].id | doi:10.5281/zenodo.17904576 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17904576 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Clemente Carrari, Gabriel |
| authorships[0].countries | BR |
| authorships[0].institutions[0].id | https://openalex.org/I879563668 |
| authorships[0].institutions[0].ror | https://ror.org/00987cb86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I879563668 |
| authorships[0].institutions[0].country_code | BR |
| authorships[0].institutions[0].display_name | Universidade Estadual Paulista (Unesp) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Clemente Carrari, Gabriel |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Pereira Gouveia da Silva, Gabriel |
| authorships[1].countries | BR |
| authorships[1].institutions[0].id | https://openalex.org/I879563668 |
| authorships[1].institutions[0].ror | https://ror.org/00987cb86 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I879563668 |
| authorships[1].institutions[0].country_code | BR |
| authorships[1].institutions[0].display_name | Universidade Estadual Paulista (Unesp) |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Pereira Gouveia da Silva, Gabriel |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17904576 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-12T00:00:00 |
| display_name | Machine Learning for Surrogate Modeling in Multi-Objective Wing Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-12T23:20:42.204495 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17904576 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17904576 |
| primary_location.id | doi:10.5281/zenodo.17904576 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17904576 |
| publication_date | 2025-12-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9 |
| abstract_inverted_index.as | 115 |
| abstract_inverted_index.by | 13, 93 |
| abstract_inverted_index.in | 90, 150 |
| abstract_inverted_index.is | 157 |
| abstract_inverted_index.of | 28, 97, 146 |
| abstract_inverted_index.on | 24, 35 |
| abstract_inverted_index.to | 78, 100, 121 |
| abstract_inverted_index.1.4 | 58 |
| abstract_inverted_index.2.5 | 42 |
| abstract_inverted_index.CD, | 83 |
| abstract_inverted_index.CM) | 84 |
| abstract_inverted_index.The | 38, 128 |
| abstract_inverted_index.VLM | 102 |
| abstract_inverted_index.and | 5, 57, 103, 118, 139 |
| abstract_inverted_index.for | 8 |
| abstract_inverted_index.the | 3, 48, 144 |
| abstract_inverted_index.via | 47, 63 |
| abstract_inverted_index.(CL, | 82 |
| abstract_inverted_index.Dual | 116 |
| abstract_inverted_index.Line | 66 |
| abstract_inverted_index.NLLT | 104 |
| abstract_inverted_index.São | 14 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.code | 4, 129 |
| abstract_inverted_index.data | 6, 131 |
| abstract_inverted_index.high | 86 |
| abstract_inverted_index.over | 41 |
| abstract_inverted_index.such | 114 |
| abstract_inverted_index.time | 92 |
| abstract_inverted_index.were | 76, 109 |
| abstract_inverted_index.wing | 44, 60 |
| abstract_inverted_index.with | 53, 85, 111 |
| abstract_inverted_index.(VLM) | 52 |
| abstract_inverted_index.Paulo | 15 |
| abstract_inverted_index.These | 106 |
| abstract_inverted_index.based | 34 |
| abstract_inverted_index.grant | 20 |
| abstract_inverted_index.model | 134 |
| abstract_inverted_index.three | 95 |
| abstract_inverted_index.under | 19 |
| abstract_inverted_index.using | 31 |
| abstract_inverted_index.where | 154 |
| abstract_inverted_index.wings | 30 |
| abstract_inverted_index.(MLP), | 75 |
| abstract_inverted_index.Method | 51 |
| abstract_inverted_index.Theory | 67 |
| abstract_inverted_index.Vortex | 49 |
| abstract_inverted_index.design | 125, 153 |
| abstract_inverted_index.direct | 101 |
| abstract_inverted_index.models | 33, 108 |
| abstract_inverted_index.number | 21 |
| abstract_inverted_index.orders | 96 |
| abstract_inverted_index.Genetic | 119 |
| abstract_inverted_index.Lattice | 50 |
| abstract_inverted_index.Lifting | 65 |
| abstract_inverted_index.Machine | 69 |
| abstract_inverted_index.dataset | 39 |
| abstract_inverted_index.machine | 36, 147 |
| abstract_inverted_index.million | 43, 59 |
| abstract_inverted_index.models, | 71 |
| abstract_inverted_index.perform | 122 |
| abstract_inverted_index.predict | 79 |
| abstract_inverted_index.project | 11 |
| abstract_inverted_index.trained | 77 |
| abstract_inverted_index.varying | 54 |
| abstract_inverted_index.(FAPESP) | 18 |
| abstract_inverted_index.(N-LLT). | 68 |
| abstract_inverted_index.Research | 16 |
| abstract_inverted_index.aircraft | 152 |
| abstract_inverted_index.compared | 99 |
| abstract_inverted_index.contains | 2 |
| abstract_inverted_index.enabling | 88 |
| abstract_inverted_index.includes | 40 |
| abstract_inverted_index.learning | 70, 148 |
| abstract_inverted_index.research | 10 |
| abstract_inverted_index.subsonic | 29 |
| abstract_inverted_index..focusing | 23 |
| abstract_inverted_index.Annealing | 117 |
| abstract_inverted_index.Nonlinear | 64 |
| abstract_inverted_index.accuracy, | 87 |
| abstract_inverted_index.critical. | 158 |
| abstract_inverted_index.developed | 7 |
| abstract_inverted_index.geometric | 55 |
| abstract_inverted_index.including | 72 |
| abstract_inverted_index.learning. | 37 |
| abstract_inverted_index.magnitude | 98 |
| abstract_inverted_index.potential | 145 |
| abstract_inverted_index.simulated | 46, 62 |
| abstract_inverted_index.supported | 12 |
| abstract_inverted_index.surrogate | 32, 107, 133 |
| abstract_inverted_index.training, | 135 |
| abstract_inverted_index.Algorithms | 120 |
| abstract_inverted_index.Foundation | 17 |
| abstract_inverted_index.algorithms | 113 |
| abstract_inverted_index.conceptual | 151 |
| abstract_inverted_index.efficiency | 156 |
| abstract_inverted_index.geometries | 45, 61 |
| abstract_inverted_index.integrated | 110 |
| abstract_inverted_index.parameters | 56 |
| abstract_inverted_index.reductions | 89 |
| abstract_inverted_index.repository | 1 |
| abstract_inverted_index.surrogates | 149 |
| abstract_inverted_index.workflows, | 142 |
| abstract_inverted_index.Multi-Layer | 73 |
| abstract_inverted_index.Perceptrons | 74 |
| abstract_inverted_index.aerodynamic | 25, 80, 124, 136 |
| abstract_inverted_index.facilitates | 130 |
| abstract_inverted_index.performance | 137 |
| abstract_inverted_index.prediction, | 138 |
| abstract_inverted_index.processing, | 132 |
| abstract_inverted_index.2024/07804-2 | 22 |
| abstract_inverted_index.coefficients | 81 |
| abstract_inverted_index.efficiently. | 127 |
| abstract_inverted_index.optimization | 27, 112, 126, 141 |
| abstract_inverted_index.simulations. | 105 |
| abstract_inverted_index.approximately | 94 |
| abstract_inverted_index.computational | 91, 155 |
| abstract_inverted_index.demonstrating | 143 |
| abstract_inverted_index.multiobjective | 26, 123, 140 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |