Machine learning generalised DFT+ U projectors in a numerical atom-centred orbital framework Article Swipe
Amit Chaudhari
,
Kushagra Agrawal
,
Andrew J. Logsdail
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1039/d5dd00292c
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1039/d5dd00292c
We present machine learning-based workflows using symbolic regression and support vector machines to simultaneously optimise Hubbard U values and projectors, enabling accurate and efficient simulations of defects and polarons in complex metal oxides.
Related Topics
Concepts
No concepts available.
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1039/d5dd00292c
- https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00292c
- OA Status
- diamond
- References
- 99
- OpenAlex ID
- https://openalex.org/W4415696392
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415696392Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1039/d5dd00292cDigital Object Identifier
- Title
-
Machine learning generalised DFT+ U projectors in a numerical atom-centred orbital frameworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Amit Chaudhari, Kushagra Agrawal, Andrew J. LogsdailList of authors in order
- Landing page
-
https://doi.org/10.1039/d5dd00292cPublisher landing page
- PDF URL
-
https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00292cDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00292cDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
99Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415696392 |
|---|---|
| doi | https://doi.org/10.1039/d5dd00292c |
| ids.doi | https://doi.org/10.1039/d5dd00292c |
| ids.openalex | https://openalex.org/W4415696392 |
| fwci | |
| type | article |
| title | Machine learning generalised DFT+ U projectors in a numerical atom-centred orbital framework |
| biblio.issue | 12 |
| biblio.volume | 4 |
| biblio.last_page | 3727 |
| biblio.first_page | 3701 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1039/d5dd00292c |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202120 |
| locations[0].source.issn | 2635-098X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2635-098X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Digital Discovery |
| locations[0].source.host_organization | https://openalex.org/P4310320556 |
| locations[0].source.host_organization_name | Royal Society of Chemistry |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320556 |
| locations[0].source.host_organization_lineage_names | Royal Society of Chemistry |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00292c |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Digital Discovery |
| locations[0].landing_page_url | https://doi.org/10.1039/d5dd00292c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5046203304 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-9782-9332 |
| authorships[0].author.display_name | Amit Chaudhari |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Amit Chaudhari |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5030795826 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9749-1031 |
| authorships[1].author.display_name | Kushagra Agrawal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kushagra Agrawal |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5064011663 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2277-415X |
| authorships[2].author.display_name | Andrew J. Logsdail |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Andrew J Logsdail |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00292c |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-30T00:00:00 |
| display_name | Machine learning generalised DFT+ U projectors in a numerical atom-centred orbital framework |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-04T23:47:47.292601 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1039/d5dd00292c |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202120 |
| best_oa_location.source.issn | 2635-098X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2635-098X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Digital Discovery |
| best_oa_location.source.host_organization | https://openalex.org/P4310320556 |
| best_oa_location.source.host_organization_name | Royal Society of Chemistry |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320556 |
| best_oa_location.source.host_organization_lineage_names | Royal Society of Chemistry |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00292c |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Digital Discovery |
| best_oa_location.landing_page_url | https://doi.org/10.1039/d5dd00292c |
| primary_location.id | doi:10.1039/d5dd00292c |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202120 |
| primary_location.source.issn | 2635-098X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2635-098X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Digital Discovery |
| primary_location.source.host_organization | https://openalex.org/P4310320556 |
| primary_location.source.host_organization_name | Royal Society of Chemistry |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320556 |
| primary_location.source.host_organization_lineage_names | Royal Society of Chemistry |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00292c |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Digital Discovery |
| primary_location.landing_page_url | https://doi.org/10.1039/d5dd00292c |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2991363301, https://openalex.org/W4280489778, https://openalex.org/W4400213310, https://openalex.org/W2171219284, https://openalex.org/W2085026979, https://openalex.org/W2230728100, https://openalex.org/W2008041424, https://openalex.org/W2052637367, https://openalex.org/W4214503322, https://openalex.org/W1601357266, https://openalex.org/W2557211021, https://openalex.org/W4323048647, https://openalex.org/W1986731219, https://openalex.org/W2912122405, https://openalex.org/W4399495960, https://openalex.org/W2759650462, https://openalex.org/W3105252623, https://openalex.org/W2130713920, https://openalex.org/W4316658815, https://openalex.org/W3123884558, https://openalex.org/W3093497096, https://openalex.org/W3015796050, https://openalex.org/W1985628158, https://openalex.org/W2043691039, https://openalex.org/W2886841984, https://openalex.org/W1988169256, https://openalex.org/W2083197600, https://openalex.org/W4391313189, https://openalex.org/W2067162543, https://openalex.org/W4399203612, https://openalex.org/W2902881717, https://openalex.org/W3108884590, https://openalex.org/W4386754442, https://openalex.org/W3212371726, https://openalex.org/W4390491051, https://openalex.org/W4406787247, https://openalex.org/W4287447432, https://openalex.org/W2148424525, https://openalex.org/W2591191984, https://openalex.org/W2076759175, https://openalex.org/W2016168218, https://openalex.org/W2769331892, https://openalex.org/W2008423326, https://openalex.org/W2143534614, https://openalex.org/W2103111465, https://openalex.org/W2078409719, https://openalex.org/W2005136695, https://openalex.org/W2038210983, https://openalex.org/W2068972463, https://openalex.org/W2885973472, https://openalex.org/W3148119891, https://openalex.org/W4285493988, https://openalex.org/W1989203892, https://openalex.org/W1997994138, https://openalex.org/W2810294304, https://openalex.org/W4221127808, https://openalex.org/W4386817911, https://openalex.org/W2910309933, https://openalex.org/W1966665346, https://openalex.org/W2044548995, https://openalex.org/W4413307261, https://openalex.org/W1510052597, https://openalex.org/W4249517230, https://openalex.org/W1971044734, https://openalex.org/W2107024505, https://openalex.org/W2950239415, https://openalex.org/W3175349876, https://openalex.org/W2891590046, https://openalex.org/W4390266158, https://openalex.org/W4410159253, https://openalex.org/W2001247342, https://openalex.org/W2024535223, https://openalex.org/W3011760894, https://openalex.org/W3092069723, https://openalex.org/W2567135055, https://openalex.org/W2995002936, https://openalex.org/W3039242783, https://openalex.org/W3196191950, https://openalex.org/W1974333117, https://openalex.org/W7077471744, https://openalex.org/W1978556318, https://openalex.org/W3009750941, https://openalex.org/W4399467099, https://openalex.org/W2806964762, https://openalex.org/W3101443135, https://openalex.org/W4391883517, https://openalex.org/W1967876344, https://openalex.org/W1991798522, https://openalex.org/W2358455127, https://openalex.org/W2082317443, https://openalex.org/W2100192696, https://openalex.org/W2049888948, https://openalex.org/W2060937228, https://openalex.org/W2094434409, https://openalex.org/W2059363184, https://openalex.org/W2024424027, https://openalex.org/W3126977499, https://openalex.org/W2338888865, https://openalex.org/W4414921259 |
| referenced_works_count | 99 |
| abstract_inverted_index.U | 16 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.in | 29 |
| abstract_inverted_index.of | 25 |
| abstract_inverted_index.to | 12 |
| abstract_inverted_index.and | 8, 18, 22, 27 |
| abstract_inverted_index.metal | 31 |
| abstract_inverted_index.using | 5 |
| abstract_inverted_index.values | 17 |
| abstract_inverted_index.vector | 10 |
| abstract_inverted_index.Hubbard | 15 |
| abstract_inverted_index.complex | 30 |
| abstract_inverted_index.defects | 26 |
| abstract_inverted_index.machine | 2 |
| abstract_inverted_index.oxides. | 32 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.support | 9 |
| abstract_inverted_index.accurate | 21 |
| abstract_inverted_index.enabling | 20 |
| abstract_inverted_index.machines | 11 |
| abstract_inverted_index.optimise | 14 |
| abstract_inverted_index.polarons | 28 |
| abstract_inverted_index.symbolic | 6 |
| abstract_inverted_index.efficient | 23 |
| abstract_inverted_index.workflows | 4 |
| abstract_inverted_index.regression | 7 |
| abstract_inverted_index.projectors, | 19 |
| abstract_inverted_index.simulations | 24 |
| abstract_inverted_index.learning-based | 3 |
| abstract_inverted_index.simultaneously | 13 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |