Machine learning generalised DFT+U projectors in a numerical atom-centred orbital framework Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.26434/chemrxiv-2025-332z0
Accurate electronic structure simulations of strongly correlated metal oxides are crucial for the atomic level understanding of heterogeneous catalysts, batteries and photovoltaics; but remain challenging to perform in a computationally tractable manner. Hubbard corrected density functional theory (DFT+U) in a numerical atom-centred orbital framework, has been shown to address this challenge but is susceptible to numerical instability when simulating common transition metal oxides (TMOs) e.g., TiO2, and rare-earth metal oxides (REOs) e.g., CeO2, necessitating the development of advanced DFT+U parameterisation strategies. In this work, the numerical instabilities of DFT+U are traced to the default atomic Hubbard projector, which we refine for Ti 3d orbitals in TiO2 using Bayesian optimisation, with a cost function and constraints defined using symbolic regression (SR) and support vector machines, respectively. The optimised Ti 3d Hubbard projector enables the numerically stable simulation of electron polarons at intrinsic and extrinsic defects in both anatase and rutile TiO2, with comparable accuracy to hybrid-DFT at several orders of magnitude lower computational cost. We extend the method by defining a general first-principles approach for optimising Hubbard projectors, based on reproducing orbital occupancies calculated using hybrid-DFT. Using a hierarchical SR-defined cost function that depends on DFT-predicted orbital occupancies, basis set parameters and atomic material descriptors, a generalised workflow for the one-shot computation of Hubbard U values and projectors is presented. The method transferability is shown for 10 prototypical TMOs and REOs, with demonstrable accuracy for unseen materials, that extends to complex battery cathode materials like LiCo(1-x)Mg(x)O(2-x). The work highlights the integration of advanced machine learning algorithms to develop cost-effective and transferable workflows for DFT+U parameterisation, enabling more accurate and efficient simulations of strongly correlated metal oxides.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.26434/chemrxiv-2025-332z0
- https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/685199063ba0887c330b26c6/original/machine-learning-generalised-dft-u-projectors-in-a-numerical-atom-centred-orbital-framework.pdf
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411467600
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411467600Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26434/chemrxiv-2025-332z0Digital Object Identifier
- Title
-
Machine learning generalised DFT+U projectors in a numerical atom-centred orbital frameworkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-20Full publication date if available
- Authors
-
Amit Chaudhari, Kushagra Agrawal, Andrew J. LogsdailList of authors in order
- Landing page
-
https://doi.org/10.26434/chemrxiv-2025-332z0Publisher landing page
- PDF URL
-
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/685199063ba0887c330b26c6/original/machine-learning-generalised-dft-u-projectors-in-a-numerical-atom-centred-orbital-framework.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/685199063ba0887c330b26c6/original/machine-learning-generalised-dft-u-projectors-in-a-numerical-atom-centred-orbital-framework.pdfDirect OA link when available
- Concepts
-
Density functional theory, Hubbard model, Hybrid functional, Basis set, Projector, Atom (system on chip), Computer science, Materials science, Computational chemistry, Physics, Chemistry, Quantum mechanics, Artificial intelligence, Superconductivity, Embedded systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411467600 |
|---|---|
| doi | https://doi.org/10.26434/chemrxiv-2025-332z0 |
| ids.doi | https://doi.org/10.26434/chemrxiv-2025-332z0 |
| ids.openalex | https://openalex.org/W4411467600 |
| fwci | 0.0 |
| type | preprint |
| title | Machine learning generalised DFT+U projectors in a numerical atom-centred orbital framework |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T11825 |
| topics[1].field.id | https://openalex.org/fields/15 |
| topics[1].field.display_name | Chemical Engineering |
| topics[1].score | 0.994700014591217 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1503 |
| topics[1].subfield.display_name | Catalysis |
| topics[1].display_name | Catalysis and Oxidation Reactions |
| topics[2].id | https://openalex.org/T12613 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9922000169754028 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | X-ray Diffraction in Crystallography |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C152365726 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6841197609901428 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1048589 |
| concepts[0].display_name | Density functional theory |
| concepts[1].id | https://openalex.org/C106074065 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5185645222663879 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1571298 |
| concepts[1].display_name | Hubbard model |
| concepts[2].id | https://openalex.org/C22693506 |
| concepts[2].level | 3 |
| concepts[2].score | 0.4512377083301544 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3075290 |
| concepts[2].display_name | Hybrid functional |
| concepts[3].id | https://openalex.org/C65956243 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4443325996398926 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2664086 |
| concepts[3].display_name | Basis set |
| concepts[4].id | https://openalex.org/C2776865275 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43075549602508545 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q311666 |
| concepts[4].display_name | Projector |
| concepts[5].id | https://openalex.org/C58312451 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4191345274448395 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4817200 |
| concepts[5].display_name | Atom (system on chip) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4093393087387085 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C192562407 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3897942304611206 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[7].display_name | Materials science |
| concepts[8].id | https://openalex.org/C147597530 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3286794424057007 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q369472 |
| concepts[8].display_name | Computational chemistry |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.31609004735946655 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2849472165107727 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.21854150295257568 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1600722074508667 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C54101563 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q124131 |
| concepts[13].display_name | Superconductivity |
| concepts[14].id | https://openalex.org/C149635348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[14].display_name | Embedded system |
| keywords[0].id | https://openalex.org/keywords/density-functional-theory |
| keywords[0].score | 0.6841197609901428 |
| keywords[0].display_name | Density functional theory |
| keywords[1].id | https://openalex.org/keywords/hubbard-model |
| keywords[1].score | 0.5185645222663879 |
| keywords[1].display_name | Hubbard model |
| keywords[2].id | https://openalex.org/keywords/hybrid-functional |
| keywords[2].score | 0.4512377083301544 |
| keywords[2].display_name | Hybrid functional |
| keywords[3].id | https://openalex.org/keywords/basis-set |
| keywords[3].score | 0.4443325996398926 |
| keywords[3].display_name | Basis set |
| keywords[4].id | https://openalex.org/keywords/projector |
| keywords[4].score | 0.43075549602508545 |
| keywords[4].display_name | Projector |
| keywords[5].id | https://openalex.org/keywords/atom |
| keywords[5].score | 0.4191345274448395 |
| keywords[5].display_name | Atom (system on chip) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4093393087387085 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/materials-science |
| keywords[7].score | 0.3897942304611206 |
| keywords[7].display_name | Materials science |
| keywords[8].id | https://openalex.org/keywords/computational-chemistry |
| keywords[8].score | 0.3286794424057007 |
| keywords[8].display_name | Computational chemistry |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.31609004735946655 |
| keywords[9].display_name | Physics |
| keywords[10].id | https://openalex.org/keywords/chemistry |
| keywords[10].score | 0.2849472165107727 |
| keywords[10].display_name | Chemistry |
| keywords[11].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[11].score | 0.21854150295257568 |
| keywords[11].display_name | Quantum mechanics |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.1600722074508667 |
| keywords[12].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.26434/chemrxiv-2025-332z0 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/685199063ba0887c330b26c6/original/machine-learning-generalised-dft-u-projectors-in-a-numerical-atom-centred-orbital-framework.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.26434/chemrxiv-2025-332z0 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5046203304 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-9782-9332 |
| authorships[0].author.display_name | Amit Chaudhari |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I79510175 |
| authorships[0].affiliations[0].raw_affiliation_string | Cardiff University |
| authorships[0].institutions[0].id | https://openalex.org/I79510175 |
| authorships[0].institutions[0].ror | https://ror.org/03kk7td41 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I79510175 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Cardiff University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Amit Chaudhari |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Cardiff University |
| authorships[1].author.id | https://openalex.org/A5030795826 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9749-1031 |
| authorships[1].author.display_name | Kushagra Agrawal |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I79510175 |
| authorships[1].affiliations[0].raw_affiliation_string | Cardiff University |
| authorships[1].institutions[0].id | https://openalex.org/I79510175 |
| authorships[1].institutions[0].ror | https://ror.org/03kk7td41 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I79510175 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Cardiff University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kushagra Agrawal |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Cardiff University |
| authorships[2].author.id | https://openalex.org/A5064011663 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2277-415X |
| authorships[2].author.display_name | Andrew J. Logsdail |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I79510175 |
| authorships[2].affiliations[0].raw_affiliation_string | Cardiff University |
| authorships[2].institutions[0].id | https://openalex.org/I79510175 |
| authorships[2].institutions[0].ror | https://ror.org/03kk7td41 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I79510175 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Cardiff University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Andrew Logsdail |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Cardiff University |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/685199063ba0887c330b26c6/original/machine-learning-generalised-dft-u-projectors-in-a-numerical-atom-centred-orbital-framework.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine learning generalised DFT+U projectors in a numerical atom-centred orbital framework |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W2366989203, https://openalex.org/W2013995543, https://openalex.org/W2547954852, https://openalex.org/W2800812882, https://openalex.org/W3198360760, https://openalex.org/W2388454722, https://openalex.org/W4388488814, https://openalex.org/W2023375751, https://openalex.org/W2075771715, https://openalex.org/W1984362624 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.26434/chemrxiv-2025-332z0 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/685199063ba0887c330b26c6/original/machine-learning-generalised-dft-u-projectors-in-a-numerical-atom-centred-orbital-framework.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.26434/chemrxiv-2025-332z0 |
| primary_location.id | doi:10.26434/chemrxiv-2025-332z0 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/685199063ba0887c330b26c6/original/machine-learning-generalised-dft-u-projectors-in-a-numerical-atom-centred-orbital-framework.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.26434/chemrxiv-2025-332z0 |
| publication_date | 2025-06-20 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.U | 213 |
| abstract_inverted_index.a | 28, 39, 110, 169, 186, 204 |
| abstract_inverted_index.10 | 225 |
| abstract_inverted_index.3d | 102, 128 |
| abstract_inverted_index.In | 81 |
| abstract_inverted_index.Ti | 101, 127 |
| abstract_inverted_index.We | 163 |
| abstract_inverted_index.at | 139, 155 |
| abstract_inverted_index.by | 167 |
| abstract_inverted_index.in | 27, 38, 104, 144 |
| abstract_inverted_index.is | 52, 217, 222 |
| abstract_inverted_index.of | 4, 16, 76, 87, 136, 158, 211, 250, 270 |
| abstract_inverted_index.on | 178, 193 |
| abstract_inverted_index.to | 25, 47, 54, 91, 153, 238, 255 |
| abstract_inverted_index.we | 98 |
| abstract_inverted_index.The | 125, 219, 245 |
| abstract_inverted_index.and | 20, 66, 113, 120, 141, 147, 200, 215, 228, 258, 267 |
| abstract_inverted_index.are | 9, 89 |
| abstract_inverted_index.but | 22, 51 |
| abstract_inverted_index.for | 11, 100, 173, 207, 224, 233, 261 |
| abstract_inverted_index.has | 44 |
| abstract_inverted_index.set | 198 |
| abstract_inverted_index.the | 12, 74, 84, 92, 132, 165, 208, 248 |
| abstract_inverted_index.(SR) | 119 |
| abstract_inverted_index.TMOs | 227 |
| abstract_inverted_index.TiO2 | 105 |
| abstract_inverted_index.been | 45 |
| abstract_inverted_index.both | 145 |
| abstract_inverted_index.cost | 111, 189 |
| abstract_inverted_index.like | 243 |
| abstract_inverted_index.more | 265 |
| abstract_inverted_index.that | 191, 236 |
| abstract_inverted_index.this | 49, 82 |
| abstract_inverted_index.when | 57 |
| abstract_inverted_index.with | 109, 150, 230 |
| abstract_inverted_index.work | 246 |
| abstract_inverted_index.CeO2, | 72 |
| abstract_inverted_index.DFT+U | 78, 88, 262 |
| abstract_inverted_index.REOs, | 229 |
| abstract_inverted_index.TiO2, | 65, 149 |
| abstract_inverted_index.Using | 185 |
| abstract_inverted_index.based | 177 |
| abstract_inverted_index.basis | 197 |
| abstract_inverted_index.cost. | 162 |
| abstract_inverted_index.e.g., | 64, 71 |
| abstract_inverted_index.level | 14 |
| abstract_inverted_index.lower | 160 |
| abstract_inverted_index.metal | 7, 61, 68, 273 |
| abstract_inverted_index.shown | 46, 223 |
| abstract_inverted_index.using | 106, 116, 183 |
| abstract_inverted_index.which | 97 |
| abstract_inverted_index.work, | 83 |
| abstract_inverted_index.(REOs) | 70 |
| abstract_inverted_index.(TMOs) | 63 |
| abstract_inverted_index.atomic | 13, 94, 201 |
| abstract_inverted_index.common | 59 |
| abstract_inverted_index.extend | 164 |
| abstract_inverted_index.method | 166, 220 |
| abstract_inverted_index.orders | 157 |
| abstract_inverted_index.oxides | 8, 62, 69 |
| abstract_inverted_index.refine | 99 |
| abstract_inverted_index.remain | 23 |
| abstract_inverted_index.rutile | 148 |
| abstract_inverted_index.stable | 134 |
| abstract_inverted_index.theory | 36 |
| abstract_inverted_index.traced | 90 |
| abstract_inverted_index.unseen | 234 |
| abstract_inverted_index.values | 214 |
| abstract_inverted_index.vector | 122 |
| abstract_inverted_index.(DFT+U) | 37 |
| abstract_inverted_index.Hubbard | 32, 95, 129, 175, 212 |
| abstract_inverted_index.address | 48 |
| abstract_inverted_index.anatase | 146 |
| abstract_inverted_index.battery | 240 |
| abstract_inverted_index.cathode | 241 |
| abstract_inverted_index.complex | 239 |
| abstract_inverted_index.crucial | 10 |
| abstract_inverted_index.default | 93 |
| abstract_inverted_index.defects | 143 |
| abstract_inverted_index.defined | 115 |
| abstract_inverted_index.density | 34 |
| abstract_inverted_index.depends | 192 |
| abstract_inverted_index.develop | 256 |
| abstract_inverted_index.enables | 131 |
| abstract_inverted_index.extends | 237 |
| abstract_inverted_index.general | 170 |
| abstract_inverted_index.machine | 252 |
| abstract_inverted_index.manner. | 31 |
| abstract_inverted_index.orbital | 42, 180, 195 |
| abstract_inverted_index.oxides. | 274 |
| abstract_inverted_index.perform | 26 |
| abstract_inverted_index.several | 156 |
| abstract_inverted_index.support | 121 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.Bayesian | 107 |
| abstract_inverted_index.accuracy | 152, 232 |
| abstract_inverted_index.accurate | 266 |
| abstract_inverted_index.advanced | 77, 251 |
| abstract_inverted_index.approach | 172 |
| abstract_inverted_index.defining | 168 |
| abstract_inverted_index.electron | 137 |
| abstract_inverted_index.enabling | 264 |
| abstract_inverted_index.function | 112, 190 |
| abstract_inverted_index.learning | 253 |
| abstract_inverted_index.material | 202 |
| abstract_inverted_index.one-shot | 209 |
| abstract_inverted_index.orbitals | 103 |
| abstract_inverted_index.polarons | 138 |
| abstract_inverted_index.strongly | 5, 271 |
| abstract_inverted_index.symbolic | 117 |
| abstract_inverted_index.workflow | 206 |
| abstract_inverted_index.batteries | 19 |
| abstract_inverted_index.challenge | 50 |
| abstract_inverted_index.corrected | 33 |
| abstract_inverted_index.efficient | 268 |
| abstract_inverted_index.extrinsic | 142 |
| abstract_inverted_index.intrinsic | 140 |
| abstract_inverted_index.machines, | 123 |
| abstract_inverted_index.magnitude | 159 |
| abstract_inverted_index.materials | 242 |
| abstract_inverted_index.numerical | 40, 55, 85 |
| abstract_inverted_index.optimised | 126 |
| abstract_inverted_index.projector | 130 |
| abstract_inverted_index.structure | 2 |
| abstract_inverted_index.tractable | 30 |
| abstract_inverted_index.workflows | 260 |
| abstract_inverted_index.SR-defined | 188 |
| abstract_inverted_index.algorithms | 254 |
| abstract_inverted_index.calculated | 182 |
| abstract_inverted_index.catalysts, | 18 |
| abstract_inverted_index.comparable | 151 |
| abstract_inverted_index.correlated | 6, 272 |
| abstract_inverted_index.electronic | 1 |
| abstract_inverted_index.framework, | 43 |
| abstract_inverted_index.functional | 35 |
| abstract_inverted_index.highlights | 247 |
| abstract_inverted_index.hybrid-DFT | 154 |
| abstract_inverted_index.materials, | 235 |
| abstract_inverted_index.optimising | 174 |
| abstract_inverted_index.parameters | 199 |
| abstract_inverted_index.presented. | 218 |
| abstract_inverted_index.projector, | 96 |
| abstract_inverted_index.projectors | 216 |
| abstract_inverted_index.rare-earth | 67 |
| abstract_inverted_index.regression | 118 |
| abstract_inverted_index.simulating | 58 |
| abstract_inverted_index.simulation | 135 |
| abstract_inverted_index.transition | 60 |
| abstract_inverted_index.challenging | 24 |
| abstract_inverted_index.computation | 210 |
| abstract_inverted_index.constraints | 114 |
| abstract_inverted_index.development | 75 |
| abstract_inverted_index.generalised | 205 |
| abstract_inverted_index.hybrid-DFT. | 184 |
| abstract_inverted_index.instability | 56 |
| abstract_inverted_index.integration | 249 |
| abstract_inverted_index.numerically | 133 |
| abstract_inverted_index.occupancies | 181 |
| abstract_inverted_index.projectors, | 176 |
| abstract_inverted_index.reproducing | 179 |
| abstract_inverted_index.simulations | 3, 269 |
| abstract_inverted_index.strategies. | 80 |
| abstract_inverted_index.susceptible | 53 |
| abstract_inverted_index.atom-centred | 41 |
| abstract_inverted_index.demonstrable | 231 |
| abstract_inverted_index.descriptors, | 203 |
| abstract_inverted_index.hierarchical | 187 |
| abstract_inverted_index.occupancies, | 196 |
| abstract_inverted_index.prototypical | 226 |
| abstract_inverted_index.transferable | 259 |
| abstract_inverted_index.DFT-predicted | 194 |
| abstract_inverted_index.computational | 161 |
| abstract_inverted_index.heterogeneous | 17 |
| abstract_inverted_index.instabilities | 86 |
| abstract_inverted_index.necessitating | 73 |
| abstract_inverted_index.optimisation, | 108 |
| abstract_inverted_index.respectively. | 124 |
| abstract_inverted_index.understanding | 15 |
| abstract_inverted_index.cost-effective | 257 |
| abstract_inverted_index.photovoltaics; | 21 |
| abstract_inverted_index.computationally | 29 |
| abstract_inverted_index.transferability | 221 |
| abstract_inverted_index.first-principles | 171 |
| abstract_inverted_index.parameterisation | 79 |
| abstract_inverted_index.parameterisation, | 263 |
| abstract_inverted_index.LiCo(1-x)Mg(x)O(2-x). | 244 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.21096822 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |