Machine learning glucose forecasting models for septic patients Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-23057-0
Sepsis-induced glucose fluctuations present major challenges in critical care, underscoring the importance of accurate glucose monitoring and forecasting to improve patient outcomes. This study introduces a suite of forecasting models trained using continuous glucose monitoring data from a diabetic patient with sepsis (19,621 data points). The models include four transformer-based ones (iTransformer, Crossformer, PatchTST, FEDformer), a dynamic linear model (DLinear), and an ensemble zero-shot inference method leveraging ChatGPT-4. Model performance was evaluated for 15-, 30-, and 60-minute prediction horizons with an optimized 30-minute lookback window. PatchTST achieved the lowest mean maximum percentage error (MMPE) for short-term forecasts (3.0% at 15 minutes), while DLinear excelled at longer horizons (7.46% and 14.41% MMPE at 30 and 60 minutes, respectively). The ensemble ChatGPT-4 approach also showed competitive results. Overall, this work offers a toolbox of advanced forecasting models for ICU glucose prediction and management. The comprehensive comparison among the models highlights the promise of machine learning models-particularly DLinear and PatchTST-in supporting glucose monitoring and ultimately digital twin implementations, paving the way toward personalized and adaptive glycemic control in septic patients.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-23057-0
- https://www.nature.com/articles/s41598-025-23057-0.pdf
- OA Status
- gold
- References
- 45
- OpenAlex ID
- https://openalex.org/W4416333236
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416333236Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-23057-0Digital Object Identifier
- Title
-
Machine learning glucose forecasting models for septic patientsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-18Full publication date if available
- Authors
-
Jiang He, Hua Jiang, Qi WangList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-23057-0Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-23057-0.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-23057-0.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
45Number of works referenced by this work
Full payload
| id | https://openalex.org/W4416333236 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-23057-0 |
| ids.doi | https://doi.org/10.1038/s41598-025-23057-0 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41253896 |
| ids.openalex | https://openalex.org/W4416333236 |
| fwci | |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000069550 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Machine Learning |
| mesh[2].qualifier_ui | Q000097 |
| mesh[2].descriptor_ui | D018805 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | blood |
| mesh[2].descriptor_name | Sepsis |
| mesh[3].qualifier_ui | Q000032 |
| mesh[3].descriptor_ui | D001786 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | analysis |
| mesh[3].descriptor_name | Blood Glucose |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D005544 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Forecasting |
| mesh[5].qualifier_ui | Q000097 |
| mesh[5].descriptor_ui | D003920 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | blood |
| mesh[5].descriptor_name | Diabetes Mellitus |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D007362 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Intensive Care Units |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000069550 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Machine Learning |
| mesh[9].qualifier_ui | Q000097 |
| mesh[9].descriptor_ui | D018805 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | blood |
| mesh[9].descriptor_name | Sepsis |
| mesh[10].qualifier_ui | Q000032 |
| mesh[10].descriptor_ui | D001786 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | analysis |
| mesh[10].descriptor_name | Blood Glucose |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D005544 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Forecasting |
| mesh[12].qualifier_ui | Q000097 |
| mesh[12].descriptor_ui | D003920 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | blood |
| mesh[12].descriptor_name | Diabetes Mellitus |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D007362 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Intensive Care Units |
| type | article |
| title | Machine learning glucose forecasting models for septic patients |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 40432 |
| biblio.first_page | 40432 |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-23057-0 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-23057-0.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-23057-0 |
| locations[1].id | pmid:41253896 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41253896 |
| locations[2].id | pmh:oai:doaj.org/article:6382009ee8c94a4096ccb9cc918091ed |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-20 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/6382009ee8c94a4096ccb9cc918091ed |
| locations[3].id | pmh:oai:europepmc.org:11435504 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12627512 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100421924 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8286-9652 |
| authorships[0].author.display_name | Jiang He |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I150229711, https://openalex.org/I4210118397 |
| authorships[0].affiliations[0].raw_affiliation_string | Sichuan Provincial Center for Emergency Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210118397 |
| authorships[0].institutions[0].ror | https://ror.org/01qh26a66 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210118397 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital |
| authorships[0].institutions[1].id | https://openalex.org/I150229711 |
| authorships[0].institutions[1].ror | https://ror.org/04qr3zq92 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I150229711 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | University of Electronic Science and Technology of China |
| authorships[0].author_position | last |
| authorships[0].raw_author_name | Jue-Xia He |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Sichuan Provincial Center for Emergency Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, China |
| authorships[1].author.id | https://openalex.org/A5100699268 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7470-6239 |
| authorships[1].author.display_name | Hua Jiang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I150229711, https://openalex.org/I4210118397 |
| authorships[1].affiliations[0].raw_affiliation_string | Sichuan Provincial Center for Emergency Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210118397 |
| authorships[1].institutions[0].ror | https://ror.org/01qh26a66 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210118397 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital |
| authorships[1].institutions[1].id | https://openalex.org/I150229711 |
| authorships[1].institutions[1].ror | https://ror.org/04qr3zq92 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I150229711 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | University of Electronic Science and Technology of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hua Jiang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Sichuan Provincial Center for Emergency Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, China |
| authorships[2].author.id | https://openalex.org/A5100341403 |
| authorships[2].author.orcid | https://orcid.org/0009-0002-4195-6933 |
| authorships[2].author.display_name | Qi Wang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematics, University of South Carolina, Columbia, SC, 29208, USA |
| authorships[2].institutions[0].id | https://openalex.org/I155781252 |
| authorships[2].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of South Carolina |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qi Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematics, University of South Carolina, Columbia, SC, 29208, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-23057-0.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-18T00:00:00 |
| display_name | Machine learning glucose forecasting models for septic patients |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T11:28:33.906110 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-23057-0 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-23057-0.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-23057-0 |
| primary_location.id | doi:10.1038/s41598-025-23057-0 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-23057-0.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-23057-0 |
| publication_date | 2025-11-18 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2805079780, https://openalex.org/W4409894534, https://openalex.org/W2164990391, https://openalex.org/W4410488882, https://openalex.org/W2035037946, https://openalex.org/W2165785647, https://openalex.org/W2782661788, https://openalex.org/W2107545755, https://openalex.org/W2131556432, https://openalex.org/W4383998070, https://openalex.org/W3132465430, https://openalex.org/W2516088608, https://openalex.org/W2103336162, https://openalex.org/W4411864819, https://openalex.org/W4412785655, https://openalex.org/W2004429504, https://openalex.org/W4386583181, https://openalex.org/W2313106246, https://openalex.org/W2069921929, https://openalex.org/W2761369473, https://openalex.org/W2097482222, https://openalex.org/W2480099337, https://openalex.org/W4393094536, https://openalex.org/W4389264543, https://openalex.org/W2125163474, https://openalex.org/W2989014701, https://openalex.org/W2079569240, https://openalex.org/W4406217630, https://openalex.org/W2901297117, https://openalex.org/W4382237558, https://openalex.org/W1984817899, https://openalex.org/W2175224709, https://openalex.org/W2165760729, https://openalex.org/W2125498567, https://openalex.org/W4407779538, https://openalex.org/W2280404143, https://openalex.org/W4385186882, https://openalex.org/W2115285670, https://openalex.org/W1980717583, https://openalex.org/W2295634666, https://openalex.org/W2083314209, https://openalex.org/W4407386626, https://openalex.org/W4389664922, https://openalex.org/W4409441835, https://openalex.org/W4382203079 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 25, 37, 55, 129 |
| abstract_inverted_index.15 | 99 |
| abstract_inverted_index.30 | 112 |
| abstract_inverted_index.60 | 114 |
| abstract_inverted_index.an | 61, 80 |
| abstract_inverted_index.at | 98, 104, 111 |
| abstract_inverted_index.in | 6, 174 |
| abstract_inverted_index.of | 12, 27, 131, 150 |
| abstract_inverted_index.to | 18 |
| abstract_inverted_index.ICU | 136 |
| abstract_inverted_index.The | 45, 117, 141 |
| abstract_inverted_index.and | 16, 60, 75, 108, 113, 139, 155, 160, 170 |
| abstract_inverted_index.for | 72, 94, 135 |
| abstract_inverted_index.the | 10, 87, 145, 148, 166 |
| abstract_inverted_index.was | 70 |
| abstract_inverted_index.way | 167 |
| abstract_inverted_index.15-, | 73 |
| abstract_inverted_index.30-, | 74 |
| abstract_inverted_index.MMPE | 110 |
| abstract_inverted_index.This | 22 |
| abstract_inverted_index.also | 121 |
| abstract_inverted_index.data | 35, 43 |
| abstract_inverted_index.four | 48 |
| abstract_inverted_index.from | 36 |
| abstract_inverted_index.mean | 89 |
| abstract_inverted_index.ones | 50 |
| abstract_inverted_index.this | 126 |
| abstract_inverted_index.twin | 163 |
| abstract_inverted_index.with | 40, 79 |
| abstract_inverted_index.work | 127 |
| abstract_inverted_index.(3.0% | 97 |
| abstract_inverted_index.Model | 68 |
| abstract_inverted_index.among | 144 |
| abstract_inverted_index.care, | 8 |
| abstract_inverted_index.error | 92 |
| abstract_inverted_index.major | 4 |
| abstract_inverted_index.model | 58 |
| abstract_inverted_index.study | 23 |
| abstract_inverted_index.suite | 26 |
| abstract_inverted_index.using | 31 |
| abstract_inverted_index.while | 101 |
| abstract_inverted_index.(7.46% | 107 |
| abstract_inverted_index.(MMPE) | 93 |
| abstract_inverted_index.14.41% | 109 |
| abstract_inverted_index.linear | 57 |
| abstract_inverted_index.longer | 105 |
| abstract_inverted_index.lowest | 88 |
| abstract_inverted_index.method | 65 |
| abstract_inverted_index.models | 29, 46, 134, 146 |
| abstract_inverted_index.offers | 128 |
| abstract_inverted_index.paving | 165 |
| abstract_inverted_index.sepsis | 41 |
| abstract_inverted_index.septic | 175 |
| abstract_inverted_index.showed | 122 |
| abstract_inverted_index.toward | 168 |
| abstract_inverted_index.(19,621 | 42 |
| abstract_inverted_index.DLinear | 102, 154 |
| abstract_inverted_index.control | 173 |
| abstract_inverted_index.digital | 162 |
| abstract_inverted_index.dynamic | 56 |
| abstract_inverted_index.glucose | 1, 14, 33, 137, 158 |
| abstract_inverted_index.improve | 19 |
| abstract_inverted_index.include | 47 |
| abstract_inverted_index.machine | 151 |
| abstract_inverted_index.maximum | 90 |
| abstract_inverted_index.patient | 20, 39 |
| abstract_inverted_index.present | 3 |
| abstract_inverted_index.promise | 149 |
| abstract_inverted_index.toolbox | 130 |
| abstract_inverted_index.trained | 30 |
| abstract_inverted_index.window. | 84 |
| abstract_inverted_index.Overall, | 125 |
| abstract_inverted_index.PatchTST | 85 |
| abstract_inverted_index.accurate | 13 |
| abstract_inverted_index.achieved | 86 |
| abstract_inverted_index.adaptive | 171 |
| abstract_inverted_index.advanced | 132 |
| abstract_inverted_index.approach | 120 |
| abstract_inverted_index.critical | 7 |
| abstract_inverted_index.diabetic | 38 |
| abstract_inverted_index.ensemble | 62, 118 |
| abstract_inverted_index.excelled | 103 |
| abstract_inverted_index.glycemic | 172 |
| abstract_inverted_index.horizons | 78, 106 |
| abstract_inverted_index.learning | 152 |
| abstract_inverted_index.lookback | 83 |
| abstract_inverted_index.minutes, | 115 |
| abstract_inverted_index.points). | 44 |
| abstract_inverted_index.results. | 124 |
| abstract_inverted_index.30-minute | 82 |
| abstract_inverted_index.60-minute | 76 |
| abstract_inverted_index.ChatGPT-4 | 119 |
| abstract_inverted_index.PatchTST, | 53 |
| abstract_inverted_index.evaluated | 71 |
| abstract_inverted_index.forecasts | 96 |
| abstract_inverted_index.inference | 64 |
| abstract_inverted_index.minutes), | 100 |
| abstract_inverted_index.optimized | 81 |
| abstract_inverted_index.outcomes. | 21 |
| abstract_inverted_index.patients. | 176 |
| abstract_inverted_index.zero-shot | 63 |
| abstract_inverted_index.(DLinear), | 59 |
| abstract_inverted_index.ChatGPT-4. | 67 |
| abstract_inverted_index.challenges | 5 |
| abstract_inverted_index.comparison | 143 |
| abstract_inverted_index.continuous | 32 |
| abstract_inverted_index.highlights | 147 |
| abstract_inverted_index.importance | 11 |
| abstract_inverted_index.introduces | 24 |
| abstract_inverted_index.leveraging | 66 |
| abstract_inverted_index.monitoring | 15, 34, 159 |
| abstract_inverted_index.percentage | 91 |
| abstract_inverted_index.prediction | 77, 138 |
| abstract_inverted_index.short-term | 95 |
| abstract_inverted_index.supporting | 157 |
| abstract_inverted_index.ultimately | 161 |
| abstract_inverted_index.FEDformer), | 54 |
| abstract_inverted_index.PatchTST-in | 156 |
| abstract_inverted_index.competitive | 123 |
| abstract_inverted_index.forecasting | 17, 28, 133 |
| abstract_inverted_index.management. | 140 |
| abstract_inverted_index.performance | 69 |
| abstract_inverted_index.Crossformer, | 52 |
| abstract_inverted_index.fluctuations | 2 |
| abstract_inverted_index.personalized | 169 |
| abstract_inverted_index.underscoring | 9 |
| abstract_inverted_index.comprehensive | 142 |
| abstract_inverted_index.(iTransformer, | 51 |
| abstract_inverted_index.Sepsis-induced | 0 |
| abstract_inverted_index.respectively). | 116 |
| abstract_inverted_index.implementations, | 164 |
| abstract_inverted_index.transformer-based | 49 |
| abstract_inverted_index.models-particularly | 153 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |