Machine Learning Methods for Weather Forecasting: A Survey Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/atmos16010082
Weather forecasting, a vital task for agriculture, transportation, energy, etc., has evolved significantly over the years. Comprehensive surveys play a crucial role in synthesizing knowledge, identifying trends, and addressing emerging challenges in this dynamic field. In this survey, we critically examines machine learning (ML)-based weather forecasting methods, which demonstrate exceptional capability in handling complex, high-dimensional datasets and leveraging large volumes of historical and real-time data, enabling the identification of subtle patterns and relationships among weather variables. Research on specific tasks such as global weather forecasting, downscaling, extreme weather prediction, and how to combine machine learning methods with physical principles are very active in the current field. However, several unresolved or challenging issues remain, including the interpretability of models and the ability to predict rare weather events. By identifying these gaps, this research provides a roadmap for advancing machine learning-based weather forecasting techniques to complement and enhance weather prediction results.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/atmos16010082
- OA Status
- gold
- Cited By
- 33
- References
- 162
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406362609
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406362609Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/atmos16010082Digital Object Identifier
- Title
-
Machine Learning Methods for Weather Forecasting: A SurveyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-14Full publication date if available
- Authors
-
Huijun Zhang, Yaxin Liu, Chongyu Zhang, Ningyun LiList of authors in order
- Landing page
-
https://doi.org/10.3390/atmos16010082Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/atmos16010082Direct OA link when available
- Concepts
-
Meteorology, Weather prediction, Weather forecasting, Environmental science, Climatology, Computer science, Geography, GeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
33Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 33Per-year citation counts (last 5 years)
- References (count)
-
162Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406362609 |
|---|---|
| doi | https://doi.org/10.3390/atmos16010082 |
| ids.doi | https://doi.org/10.3390/atmos16010082 |
| ids.openalex | https://openalex.org/W4406362609 |
| fwci | 89.29060401 |
| type | article |
| title | Machine Learning Methods for Weather Forecasting: A Survey |
| biblio.issue | 1 |
| biblio.volume | 16 |
| biblio.last_page | 82 |
| biblio.first_page | 82 |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.8980000019073486 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C153294291 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6507716178894043 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[0].display_name | Meteorology |
| concepts[1].id | https://openalex.org/C2987469573 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5434785485267639 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q182868 |
| concepts[1].display_name | Weather prediction |
| concepts[2].id | https://openalex.org/C21001229 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5057277679443359 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q182868 |
| concepts[2].display_name | Weather forecasting |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5053563714027405 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C49204034 |
| concepts[4].level | 1 |
| concepts[4].score | 0.48201385140419006 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q52139 |
| concepts[4].display_name | Climatology |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3983602821826935 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.206600159406662 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.20505064725875854 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| keywords[0].id | https://openalex.org/keywords/meteorology |
| keywords[0].score | 0.6507716178894043 |
| keywords[0].display_name | Meteorology |
| keywords[1].id | https://openalex.org/keywords/weather-prediction |
| keywords[1].score | 0.5434785485267639 |
| keywords[1].display_name | Weather prediction |
| keywords[2].id | https://openalex.org/keywords/weather-forecasting |
| keywords[2].score | 0.5057277679443359 |
| keywords[2].display_name | Weather forecasting |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.5053563714027405 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/climatology |
| keywords[4].score | 0.48201385140419006 |
| keywords[4].display_name | Climatology |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.3983602821826935 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.206600159406662 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.20505064725875854 |
| keywords[7].display_name | Geology |
| language | en |
| locations[0].id | doi:10.3390/atmos16010082 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S946213959 |
| locations[0].source.issn | 2073-4433 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2073-4433 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Atmosphere |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Atmosphere |
| locations[0].landing_page_url | https://doi.org/10.3390/atmos16010082 |
| locations[1].id | pmh:oai:doaj.org/article:7930673818284ecfa2ad83102284860a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Atmosphere, Vol 16, Iss 1, p 82 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/7930673818284ecfa2ad83102284860a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5037719442 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3048-4969 |
| authorships[0].author.display_name | Huijun Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210101009 |
| authorships[0].affiliations[0].raw_affiliation_string | China Huaneng Clean Energy Research Institute, Beijing 102209, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210101009 |
| authorships[0].institutions[0].ror | https://ror.org/00y3jnz30 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210101009 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Huaneng Clean Energy Research Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huijun Zhang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | China Huaneng Clean Energy Research Institute, Beijing 102209, China |
| authorships[1].author.id | https://openalex.org/A5100622200 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-3912-6982 |
| authorships[1].author.display_name | Yaxin Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210101009 |
| authorships[1].affiliations[0].raw_affiliation_string | China Huaneng Clean Energy Research Institute, Beijing 102209, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210101009 |
| authorships[1].institutions[0].ror | https://ror.org/00y3jnz30 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210101009 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Huaneng Clean Energy Research Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yaxin Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | China Huaneng Clean Energy Research Institute, Beijing 102209, China |
| authorships[2].author.id | https://openalex.org/A5035397020 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7302-595X |
| authorships[2].author.display_name | Chongyu Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210101009 |
| authorships[2].affiliations[0].raw_affiliation_string | China Huaneng Clean Energy Research Institute, Beijing 102209, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210101009 |
| authorships[2].institutions[0].ror | https://ror.org/00y3jnz30 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210101009 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Huaneng Clean Energy Research Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chongyu Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | China Huaneng Clean Energy Research Institute, Beijing 102209, China |
| authorships[3].author.id | https://openalex.org/A5071185264 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1861-8146 |
| authorships[3].author.display_name | Ningyun Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210096250 |
| authorships[3].affiliations[0].raw_affiliation_string | Beijing Big Data Center, No. 3 Courtyard, Liuzhuang Road, Tongzhou District, Beijing 101117, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210096250 |
| authorships[3].institutions[0].ror | https://ror.org/00s1sz824 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I20231570, https://openalex.org/I37796252, https://openalex.org/I4210096250 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Institute of Big Data Research |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ningyun Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Beijing Big Data Center, No. 3 Courtyard, Liuzhuang Road, Tongzhou District, Beijing 101117, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/atmos16010082 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine Learning Methods for Weather Forecasting: A Survey |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.8980000019073486 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W4377970672, https://openalex.org/W2970320467, https://openalex.org/W4391877217, https://openalex.org/W2958561312, https://openalex.org/W2958409700, https://openalex.org/W4223932376, https://openalex.org/W2618707070, https://openalex.org/W361600514, https://openalex.org/W3037247764, https://openalex.org/W2013312557 |
| cited_by_count | 33 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 33 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/atmos16010082 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S946213959 |
| best_oa_location.source.issn | 2073-4433 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2073-4433 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Atmosphere |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Atmosphere |
| best_oa_location.landing_page_url | https://doi.org/10.3390/atmos16010082 |
| primary_location.id | doi:10.3390/atmos16010082 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S946213959 |
| primary_location.source.issn | 2073-4433 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2073-4433 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Atmosphere |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Atmosphere |
| primary_location.landing_page_url | https://doi.org/10.3390/atmos16010082 |
| publication_date | 2025-01-14 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2003563479, https://openalex.org/W2249865094, https://openalex.org/W2304656789, https://openalex.org/W1974673539, https://openalex.org/W4210649526, https://openalex.org/W6792731310, https://openalex.org/W4396647984, https://openalex.org/W4396648009, https://openalex.org/W4280493528, https://openalex.org/W2011822368, https://openalex.org/W4392697741, https://openalex.org/W1944752340, https://openalex.org/W2461539861, https://openalex.org/W1789155650, https://openalex.org/W3111294584, https://openalex.org/W2913323966, https://openalex.org/W4403413054, https://openalex.org/W4386920610, https://openalex.org/W4390945376, https://openalex.org/W6870473286, https://openalex.org/W1584663654, https://openalex.org/W2008847349, https://openalex.org/W1990653740, https://openalex.org/W6757838622, https://openalex.org/W2801390916, https://openalex.org/W4386123248, https://openalex.org/W4393379601, https://openalex.org/W4313898480, https://openalex.org/W2055308682, https://openalex.org/W3008439211, https://openalex.org/W4388157208, https://openalex.org/W1768149890, https://openalex.org/W2057440314, https://openalex.org/W2093643917, https://openalex.org/W1641696774, https://openalex.org/W2263189687, https://openalex.org/W2913181540, https://openalex.org/W2177044256, https://openalex.org/W2079274560, https://openalex.org/W2112362638, https://openalex.org/W4213309726, https://openalex.org/W2248556341, https://openalex.org/W4399430133, https://openalex.org/W6756911974, https://openalex.org/W3120882540, https://openalex.org/W2963973018, https://openalex.org/W2991559313, https://openalex.org/W4392814918, https://openalex.org/W4402519325, https://openalex.org/W2919115771, https://openalex.org/W4399432229, https://openalex.org/W4390827506, https://openalex.org/W2771590586, https://openalex.org/W2901418531, https://openalex.org/W2900293687, https://openalex.org/W4313824201, https://openalex.org/W2909984890, https://openalex.org/W4309582575, https://openalex.org/W1597235087, https://openalex.org/W3116886400, https://openalex.org/W3003709258, https://openalex.org/W3203885290, https://openalex.org/W1982479097, https://openalex.org/W2896006105, https://openalex.org/W4390012514, https://openalex.org/W4390816783, https://openalex.org/W3025949386, https://openalex.org/W2952236828, https://openalex.org/W4392979652, https://openalex.org/W2887146413, https://openalex.org/W2752848290, https://openalex.org/W4392529454, https://openalex.org/W2986661129, https://openalex.org/W2064675550, https://openalex.org/W6855331204, https://openalex.org/W4311765019, https://openalex.org/W4385472497, https://openalex.org/W4401107413, https://openalex.org/W4396870346, https://openalex.org/W4399829618, https://openalex.org/W1485009520, https://openalex.org/W2625614184, https://openalex.org/W2768975186, https://openalex.org/W2796873224, https://openalex.org/W4393146777, https://openalex.org/W6856677202, https://openalex.org/W2997022980, https://openalex.org/W6841513841, https://openalex.org/W4391791301, https://openalex.org/W2963870721, https://openalex.org/W4390740305, https://openalex.org/W6857318243, https://openalex.org/W6739901393, https://openalex.org/W6857838144, https://openalex.org/W6842345636, https://openalex.org/W6839401937, https://openalex.org/W4394887737, https://openalex.org/W6857916136, https://openalex.org/W3178227234, https://openalex.org/W4383218913, https://openalex.org/W4395689006, https://openalex.org/W4388728292, https://openalex.org/W3207918547, https://openalex.org/W4312812783, https://openalex.org/W4387642293, https://openalex.org/W4402265032, https://openalex.org/W3134144764, https://openalex.org/W3177318507, https://openalex.org/W3007913393, https://openalex.org/W6783741718, https://openalex.org/W2935949362, https://openalex.org/W3152893301, https://openalex.org/W4388654737, https://openalex.org/W4396983024, https://openalex.org/W4387045331, https://openalex.org/W4391881253, https://openalex.org/W6838236921, https://openalex.org/W3096831136, https://openalex.org/W4312933868, https://openalex.org/W2765811365, https://openalex.org/W3202525453, https://openalex.org/W4402798175, https://openalex.org/W4383197616, https://openalex.org/W4403554789, https://openalex.org/W4401112323, https://openalex.org/W4405031167, https://openalex.org/W4360884927, https://openalex.org/W6718379498, https://openalex.org/W2959300817, https://openalex.org/W4391114887, https://openalex.org/W4294068833, https://openalex.org/W4387623850, https://openalex.org/W4309647740, https://openalex.org/W2944681516, https://openalex.org/W4390921343, https://openalex.org/W4320921606, https://openalex.org/W4390113403, https://openalex.org/W2755158986, https://openalex.org/W4382048606, https://openalex.org/W4379925125, https://openalex.org/W4389164207, https://openalex.org/W4400880443, https://openalex.org/W3133294546, https://openalex.org/W3134713397, https://openalex.org/W4399779937, https://openalex.org/W4321593220, https://openalex.org/W4380086281, https://openalex.org/W2560442033, https://openalex.org/W4389622661, https://openalex.org/W3027237079, https://openalex.org/W2137377935, https://openalex.org/W4389639478, https://openalex.org/W2011402106, https://openalex.org/W3132191748, https://openalex.org/W2282821441, https://openalex.org/W1849277567, https://openalex.org/W6734194636, https://openalex.org/W1787224781, https://openalex.org/W3082330840, https://openalex.org/W6785373942, https://openalex.org/W4393041535, https://openalex.org/W4322010052 |
| referenced_works_count | 162 |
| abstract_inverted_index.a | 2, 19, 133 |
| abstract_inverted_index.By | 126 |
| abstract_inverted_index.In | 35 |
| abstract_inverted_index.as | 81 |
| abstract_inverted_index.in | 22, 31, 51, 102 |
| abstract_inverted_index.of | 60, 68, 116 |
| abstract_inverted_index.on | 77 |
| abstract_inverted_index.or | 109 |
| abstract_inverted_index.to | 91, 121, 142 |
| abstract_inverted_index.we | 38 |
| abstract_inverted_index.and | 27, 56, 62, 71, 89, 118, 144 |
| abstract_inverted_index.are | 99 |
| abstract_inverted_index.for | 5, 135 |
| abstract_inverted_index.has | 10 |
| abstract_inverted_index.how | 90 |
| abstract_inverted_index.the | 14, 66, 103, 114, 119 |
| abstract_inverted_index.over | 13 |
| abstract_inverted_index.play | 18 |
| abstract_inverted_index.rare | 123 |
| abstract_inverted_index.role | 21 |
| abstract_inverted_index.such | 80 |
| abstract_inverted_index.task | 4 |
| abstract_inverted_index.this | 32, 36, 130 |
| abstract_inverted_index.very | 100 |
| abstract_inverted_index.with | 96 |
| abstract_inverted_index.among | 73 |
| abstract_inverted_index.data, | 64 |
| abstract_inverted_index.etc., | 9 |
| abstract_inverted_index.gaps, | 129 |
| abstract_inverted_index.large | 58 |
| abstract_inverted_index.tasks | 79 |
| abstract_inverted_index.these | 128 |
| abstract_inverted_index.vital | 3 |
| abstract_inverted_index.which | 47 |
| abstract_inverted_index.active | 101 |
| abstract_inverted_index.field. | 34, 105 |
| abstract_inverted_index.global | 82 |
| abstract_inverted_index.issues | 111 |
| abstract_inverted_index.models | 117 |
| abstract_inverted_index.subtle | 69 |
| abstract_inverted_index.years. | 15 |
| abstract_inverted_index.Weather | 0 |
| abstract_inverted_index.ability | 120 |
| abstract_inverted_index.combine | 92 |
| abstract_inverted_index.crucial | 20 |
| abstract_inverted_index.current | 104 |
| abstract_inverted_index.dynamic | 33 |
| abstract_inverted_index.energy, | 8 |
| abstract_inverted_index.enhance | 145 |
| abstract_inverted_index.events. | 125 |
| abstract_inverted_index.evolved | 11 |
| abstract_inverted_index.extreme | 86 |
| abstract_inverted_index.machine | 41, 93, 137 |
| abstract_inverted_index.methods | 95 |
| abstract_inverted_index.predict | 122 |
| abstract_inverted_index.remain, | 112 |
| abstract_inverted_index.roadmap | 134 |
| abstract_inverted_index.several | 107 |
| abstract_inverted_index.survey, | 37 |
| abstract_inverted_index.surveys | 17 |
| abstract_inverted_index.trends, | 26 |
| abstract_inverted_index.volumes | 59 |
| abstract_inverted_index.weather | 44, 74, 83, 87, 124, 139, 146 |
| abstract_inverted_index.However, | 106 |
| abstract_inverted_index.Research | 76 |
| abstract_inverted_index.complex, | 53 |
| abstract_inverted_index.datasets | 55 |
| abstract_inverted_index.emerging | 29 |
| abstract_inverted_index.enabling | 65 |
| abstract_inverted_index.examines | 40 |
| abstract_inverted_index.handling | 52 |
| abstract_inverted_index.learning | 42, 94 |
| abstract_inverted_index.methods, | 46 |
| abstract_inverted_index.patterns | 70 |
| abstract_inverted_index.physical | 97 |
| abstract_inverted_index.provides | 132 |
| abstract_inverted_index.research | 131 |
| abstract_inverted_index.results. | 148 |
| abstract_inverted_index.specific | 78 |
| abstract_inverted_index.advancing | 136 |
| abstract_inverted_index.including | 113 |
| abstract_inverted_index.real-time | 63 |
| abstract_inverted_index.(ML)-based | 43 |
| abstract_inverted_index.addressing | 28 |
| abstract_inverted_index.capability | 50 |
| abstract_inverted_index.challenges | 30 |
| abstract_inverted_index.complement | 143 |
| abstract_inverted_index.critically | 39 |
| abstract_inverted_index.historical | 61 |
| abstract_inverted_index.knowledge, | 24 |
| abstract_inverted_index.leveraging | 57 |
| abstract_inverted_index.prediction | 147 |
| abstract_inverted_index.principles | 98 |
| abstract_inverted_index.techniques | 141 |
| abstract_inverted_index.unresolved | 108 |
| abstract_inverted_index.variables. | 75 |
| abstract_inverted_index.challenging | 110 |
| abstract_inverted_index.demonstrate | 48 |
| abstract_inverted_index.exceptional | 49 |
| abstract_inverted_index.forecasting | 45, 140 |
| abstract_inverted_index.identifying | 25, 127 |
| abstract_inverted_index.prediction, | 88 |
| abstract_inverted_index.agriculture, | 6 |
| abstract_inverted_index.downscaling, | 85 |
| abstract_inverted_index.forecasting, | 1, 84 |
| abstract_inverted_index.synthesizing | 23 |
| abstract_inverted_index.Comprehensive | 16 |
| abstract_inverted_index.relationships | 72 |
| abstract_inverted_index.significantly | 12 |
| abstract_inverted_index.identification | 67 |
| abstract_inverted_index.learning-based | 138 |
| abstract_inverted_index.transportation, | 7 |
| abstract_inverted_index.high-dimensional | 54 |
| abstract_inverted_index.interpretability | 115 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5037719442 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I4210101009 |
| citation_normalized_percentile.value | 0.99975097 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |