Machine Learning Methods in Drug Discovery Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.3390/molecules25225277
The advancements of information technology and related processing techniques have created a fertile base for progress in many scientific fields and industries. In the fields of drug discovery and development, machine learning techniques have been used for the development of novel drug candidates. The methods for designing drug targets and novel drug discovery now routinely combine machine learning and deep learning algorithms to enhance the efficiency, efficacy, and quality of developed outputs. The generation and incorporation of big data, through technologies such as high-throughput screening and high through-put computational analysis of databases used for both lead and target discovery, has increased the reliability of the machine learning and deep learning incorporated techniques. The use of these virtual screening and encompassing online information has also been highlighted in developing lead synthesis pathways. In this review, machine learning and deep learning algorithms utilized in drug discovery and associated techniques will be discussed. The applications that produce promising results and methods will be reviewed.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.3390/molecules25225277
- https://www.mdpi.com/1420-3049/25/22/5277/pdf?version=1605176714
- OA Status
- gold
- Cited By
- 399
- References
- 107
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3099252273
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3099252273Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/molecules25225277Digital Object Identifier
- Title
-
Machine Learning Methods in Drug DiscoveryWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-11-12Full publication date if available
- Authors
-
Lauv Patel, Tripti Shukla, Xiuzhen Huang, David W. Ussery, Shanzhi WangList of authors in order
- Landing page
-
https://doi.org/10.3390/molecules25225277Publisher landing page
- PDF URL
-
https://www.mdpi.com/1420-3049/25/22/5277/pdf?version=1605176714Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1420-3049/25/22/5277/pdf?version=1605176714Direct OA link when available
- Concepts
-
Drug discovery, Computer science, Machine learning, Artificial intelligence, Deep learning, Big data, Data science, Data mining, Bioinformatics, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
399Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 86, 2024: 107, 2023: 94, 2022: 81, 2021: 29Per-year citation counts (last 5 years)
- References (count)
-
107Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3099252273 |
|---|---|
| doi | https://doi.org/10.3390/molecules25225277 |
| ids.doi | https://doi.org/10.3390/molecules25225277 |
| ids.mag | 3099252273 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/33198233 |
| ids.openalex | https://openalex.org/W3099252273 |
| fwci | 30.0059737 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D001499 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Bayes Theorem |
| mesh[2].qualifier_ui | Q000379 |
| mesh[2].descriptor_ui | D019295 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | methods |
| mesh[2].descriptor_name | Computational Biology |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016208 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Databases, Factual |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000077321 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Deep Learning |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D055808 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | Drug Discovery |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D020407 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Internet |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000069550 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Machine Learning |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D009010 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Monte Carlo Method |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D015203 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Reproducibility of Results |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D012984 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Software |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D060388 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Support Vector Machine |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000465 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Algorithms |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D001499 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Bayes Theorem |
| mesh[15].qualifier_ui | Q000379 |
| mesh[15].descriptor_ui | D019295 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | methods |
| mesh[15].descriptor_name | Computational Biology |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D016208 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Databases, Factual |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000077321 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Deep Learning |
| mesh[18].qualifier_ui | Q000379 |
| mesh[18].descriptor_ui | D055808 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | methods |
| mesh[18].descriptor_name | Drug Discovery |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D006801 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Humans |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D020407 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Internet |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D000069550 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Machine Learning |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D009010 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Monte Carlo Method |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D015203 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Reproducibility of Results |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D012984 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Software |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D060388 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Support Vector Machine |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D000465 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Algorithms |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D001499 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Bayes Theorem |
| mesh[28].qualifier_ui | Q000379 |
| mesh[28].descriptor_ui | D019295 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | methods |
| mesh[28].descriptor_name | Computational Biology |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D016208 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Databases, Factual |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D000077321 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Deep Learning |
| mesh[31].qualifier_ui | Q000379 |
| mesh[31].descriptor_ui | D055808 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | methods |
| mesh[31].descriptor_name | Drug Discovery |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D006801 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Humans |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D020407 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Internet |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D000069550 |
| mesh[34].is_major_topic | True |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Machine Learning |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D009010 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Monte Carlo Method |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D015203 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Reproducibility of Results |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D012984 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Software |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D060388 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Support Vector Machine |
| type | review |
| title | Machine Learning Methods in Drug Discovery |
| awards[0].id | https://openalex.org/G2736083226 |
| awards[0].funder_id | https://openalex.org/F4320320373 |
| awards[0].display_name | |
| awards[0].funder_award_id | 1946391 |
| awards[0].funder_display_name | National Stroke Foundation |
| biblio.issue | 22 |
| biblio.volume | 25 |
| biblio.last_page | 5277 |
| biblio.first_page | 5277 |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9873999953269958 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T10836 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9606999754905701 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Metabolomics and Mass Spectrometry Studies |
| funders[0].id | https://openalex.org/F4320320373 |
| funders[0].ror | https://ror.org/004ckc033 |
| funders[0].display_name | National Stroke Foundation |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C74187038 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7881325483322144 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1418791 |
| concepts[0].display_name | Drug discovery |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7108957171440125 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6966946125030518 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.66881263256073 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5916718244552612 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C75684735 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5261546969413757 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[5].display_name | Big data |
| concepts[6].id | https://openalex.org/C2522767166 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4418491721153259 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[6].display_name | Data science |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.22863537073135376 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C60644358 |
| concepts[8].level | 1 |
| concepts[8].score | 0.17925071716308594 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[8].display_name | Bioinformatics |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/drug-discovery |
| keywords[0].score | 0.7881325483322144 |
| keywords[0].display_name | Drug discovery |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7108957171440125 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.6966946125030518 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.66881263256073 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.5916718244552612 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/big-data |
| keywords[5].score | 0.5261546969413757 |
| keywords[5].display_name | Big data |
| keywords[6].id | https://openalex.org/keywords/data-science |
| keywords[6].score | 0.4418491721153259 |
| keywords[6].display_name | Data science |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.22863537073135376 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/bioinformatics |
| keywords[8].score | 0.17925071716308594 |
| keywords[8].display_name | Bioinformatics |
| language | en |
| locations[0].id | doi:10.3390/molecules25225277 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S108911230 |
| locations[0].source.issn | 1420-3049, 1433-1373 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1420-3049 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Molecules |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1420-3049/25/22/5277/pdf?version=1605176714 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Molecules |
| locations[0].landing_page_url | https://doi.org/10.3390/molecules25225277 |
| locations[1].id | pmid:33198233 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Molecules (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/33198233 |
| locations[2].id | pmh:oai:doaj.org/article:7502f06ebfe945a1af52f87ba3a6e1dd |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Molecules, Vol 25, Iss 22, p 5277 (2020) |
| locations[2].landing_page_url | https://doaj.org/article/7502f06ebfe945a1af52f87ba3a6e1dd |
| locations[3].id | pmh:oai:mdpi.com:/1420-3049/25/22/5277/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Molecules; Volume 25; Issue 22; Pages: 5277 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/molecules25225277 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:7696134 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Molecules |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7696134 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5067864265 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Lauv Patel |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I102401767 |
| authorships[0].affiliations[0].raw_affiliation_string | Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA |
| authorships[0].institutions[0].id | https://openalex.org/I102401767 |
| authorships[0].institutions[0].ror | https://ror.org/04fttyv97 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I102401767 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Arkansas at Little Rock |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lauv Patel |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA |
| authorships[1].author.id | https://openalex.org/A5013402151 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8250-2431 |
| authorships[1].author.display_name | Tripti Shukla |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I102401767 |
| authorships[1].affiliations[0].raw_affiliation_string | Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA |
| authorships[1].institutions[0].id | https://openalex.org/I102401767 |
| authorships[1].institutions[0].ror | https://ror.org/04fttyv97 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I102401767 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Arkansas at Little Rock |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tripti Shukla |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA |
| authorships[2].author.id | https://openalex.org/A5021456840 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0498-3131 |
| authorships[2].author.display_name | Xiuzhen Huang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I125956826 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, Arkansas State University, Jonesboro, AR 72467, USA |
| authorships[2].institutions[0].id | https://openalex.org/I125956826 |
| authorships[2].institutions[0].ror | https://ror.org/006pyvd89 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I125956826 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Arkansas State University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiuzhen Huang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, Arkansas State University, Jonesboro, AR 72467, USA |
| authorships[3].author.id | https://openalex.org/A5013526952 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3632-5512 |
| authorships[3].author.display_name | David W. Ussery |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I79620101 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA |
| authorships[3].institutions[0].id | https://openalex.org/I79620101 |
| authorships[3].institutions[0].ror | https://ror.org/00xcryt71 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I79620101 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Arkansas for Medical Sciences |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | David W. Ussery |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA |
| authorships[4].author.id | https://openalex.org/A5026208292 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7068-0756 |
| authorships[4].author.display_name | Shanzhi Wang |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I102401767 |
| authorships[4].affiliations[0].raw_affiliation_string | Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA |
| authorships[4].institutions[0].id | https://openalex.org/I102401767 |
| authorships[4].institutions[0].ror | https://ror.org/04fttyv97 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I102401767 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Arkansas at Little Rock |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Shanzhi Wang |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1420-3049/25/22/5277/pdf?version=1605176714 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine Learning Methods in Drug Discovery |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W4322629366, https://openalex.org/W2808989540, https://openalex.org/W2397053934, https://openalex.org/W1039292361, https://openalex.org/W2731626691, https://openalex.org/W2551093110, https://openalex.org/W2148016376, https://openalex.org/W4237919137, https://openalex.org/W3184179822, https://openalex.org/W3095362084 |
| cited_by_count | 399 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 86 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 107 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 94 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 81 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 29 |
| counts_by_year[5].year | 2014 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/molecules25225277 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S108911230 |
| best_oa_location.source.issn | 1420-3049, 1433-1373 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1420-3049 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Molecules |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1420-3049/25/22/5277/pdf?version=1605176714 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Molecules |
| best_oa_location.landing_page_url | https://doi.org/10.3390/molecules25225277 |
| primary_location.id | doi:10.3390/molecules25225277 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S108911230 |
| primary_location.source.issn | 1420-3049, 1433-1373 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1420-3049 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Molecules |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1420-3049/25/22/5277/pdf?version=1605176714 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Molecules |
| primary_location.landing_page_url | https://doi.org/10.3390/molecules25225277 |
| publication_date | 2020-11-12 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W3045897451, https://openalex.org/W2161742217, https://openalex.org/W6754392867, https://openalex.org/W2122946987, https://openalex.org/W1970577443, https://openalex.org/W2129085142, https://openalex.org/W2413535057, https://openalex.org/W2074305628, https://openalex.org/W1969775914, https://openalex.org/W2136641116, https://openalex.org/W2801991413, https://openalex.org/W2998596150, https://openalex.org/W2103581045, https://openalex.org/W2021630848, https://openalex.org/W2989850839, https://openalex.org/W3045995536, https://openalex.org/W2937307539, https://openalex.org/W2922760757, https://openalex.org/W2940242941, https://openalex.org/W2066150117, https://openalex.org/W2567231876, https://openalex.org/W3023126697, https://openalex.org/W2782037384, https://openalex.org/W2997578645, https://openalex.org/W2911964244, https://openalex.org/W1680797894, https://openalex.org/W4239510810, https://openalex.org/W2886544065, https://openalex.org/W2773309042, https://openalex.org/W2919720720, https://openalex.org/W2987143844, https://openalex.org/W2935098703, https://openalex.org/W2889321024, https://openalex.org/W2047360869, https://openalex.org/W3123920280, https://openalex.org/W2761181345, https://openalex.org/W2559777733, https://openalex.org/W2593870237, https://openalex.org/W2921321912, https://openalex.org/W1988195734, https://openalex.org/W2779266190, https://openalex.org/W2090347203, https://openalex.org/W2054799446, https://openalex.org/W2036807780, https://openalex.org/W2005861721, https://openalex.org/W2135813353, https://openalex.org/W2904149589, https://openalex.org/W2081123119, https://openalex.org/W2800381390, https://openalex.org/W2937528824, https://openalex.org/W2025580327, https://openalex.org/W2902189168, https://openalex.org/W2340782621, https://openalex.org/W2018632273, https://openalex.org/W2419105462, https://openalex.org/W1984635143, https://openalex.org/W2041046391, https://openalex.org/W2067866176, https://openalex.org/W4242226219, https://openalex.org/W1986894335, https://openalex.org/W2948282852, https://openalex.org/W2507380695, https://openalex.org/W2997728144, https://openalex.org/W3035559885, https://openalex.org/W2035753075, https://openalex.org/W2908837618, https://openalex.org/W2919115771, https://openalex.org/W2890626570, https://openalex.org/W2766761250, https://openalex.org/W2519019522, https://openalex.org/W3012012790, https://openalex.org/W2436108096, https://openalex.org/W2148950790, https://openalex.org/W2809595040, https://openalex.org/W6674330103, https://openalex.org/W2790808809, https://openalex.org/W2773987374, https://openalex.org/W2594328795, https://openalex.org/W2765224015, https://openalex.org/W2578240541, https://openalex.org/W2969507301, https://openalex.org/W2962398326, https://openalex.org/W2747592475, https://openalex.org/W2580919858, https://openalex.org/W2774977638, https://openalex.org/W2606363443, https://openalex.org/W2970764640, https://openalex.org/W3006044405, https://openalex.org/W2976040872, https://openalex.org/W2583907533, https://openalex.org/W2951934944, https://openalex.org/W2802159733, https://openalex.org/W3022107493, https://openalex.org/W3088680691, https://openalex.org/W3007309629, https://openalex.org/W2971976902, https://openalex.org/W2939293293, https://openalex.org/W2017806952, https://openalex.org/W2994958138, https://openalex.org/W3038796705, https://openalex.org/W3047072418, https://openalex.org/W2095705004, https://openalex.org/W2890952074, https://openalex.org/W2800595743, https://openalex.org/W2963974552, https://openalex.org/W3100751385, https://openalex.org/W3104705366 |
| referenced_works_count | 107 |
| abstract_inverted_index.a | 11 |
| abstract_inverted_index.In | 22, 131 |
| abstract_inverted_index.as | 82 |
| abstract_inverted_index.be | 148, 159 |
| abstract_inverted_index.in | 16, 126, 141 |
| abstract_inverted_index.of | 2, 25, 39, 69, 76, 90, 103, 114 |
| abstract_inverted_index.to | 62 |
| abstract_inverted_index.The | 0, 43, 72, 112, 150 |
| abstract_inverted_index.and | 5, 20, 28, 49, 58, 67, 74, 85, 96, 107, 118, 136, 144, 156 |
| abstract_inverted_index.big | 77 |
| abstract_inverted_index.for | 14, 36, 45, 93 |
| abstract_inverted_index.has | 99, 122 |
| abstract_inverted_index.now | 53 |
| abstract_inverted_index.the | 23, 37, 64, 101, 104 |
| abstract_inverted_index.use | 113 |
| abstract_inverted_index.also | 123 |
| abstract_inverted_index.base | 13 |
| abstract_inverted_index.been | 34, 124 |
| abstract_inverted_index.both | 94 |
| abstract_inverted_index.deep | 59, 108, 137 |
| abstract_inverted_index.drug | 26, 41, 47, 51, 142 |
| abstract_inverted_index.have | 9, 33 |
| abstract_inverted_index.high | 86 |
| abstract_inverted_index.lead | 95, 128 |
| abstract_inverted_index.many | 17 |
| abstract_inverted_index.such | 81 |
| abstract_inverted_index.that | 152 |
| abstract_inverted_index.this | 132 |
| abstract_inverted_index.used | 35, 92 |
| abstract_inverted_index.will | 147, 158 |
| abstract_inverted_index.data, | 78 |
| abstract_inverted_index.novel | 40, 50 |
| abstract_inverted_index.these | 115 |
| abstract_inverted_index.fields | 19, 24 |
| abstract_inverted_index.online | 120 |
| abstract_inverted_index.target | 97 |
| abstract_inverted_index.combine | 55 |
| abstract_inverted_index.created | 10 |
| abstract_inverted_index.enhance | 63 |
| abstract_inverted_index.fertile | 12 |
| abstract_inverted_index.machine | 30, 56, 105, 134 |
| abstract_inverted_index.methods | 44, 157 |
| abstract_inverted_index.produce | 153 |
| abstract_inverted_index.quality | 68 |
| abstract_inverted_index.related | 6 |
| abstract_inverted_index.results | 155 |
| abstract_inverted_index.review, | 133 |
| abstract_inverted_index.targets | 48 |
| abstract_inverted_index.through | 79 |
| abstract_inverted_index.virtual | 116 |
| abstract_inverted_index.analysis | 89 |
| abstract_inverted_index.learning | 31, 57, 60, 106, 109, 135, 138 |
| abstract_inverted_index.outputs. | 71 |
| abstract_inverted_index.progress | 15 |
| abstract_inverted_index.utilized | 140 |
| abstract_inverted_index.databases | 91 |
| abstract_inverted_index.designing | 46 |
| abstract_inverted_index.developed | 70 |
| abstract_inverted_index.discovery | 27, 52, 143 |
| abstract_inverted_index.efficacy, | 66 |
| abstract_inverted_index.increased | 100 |
| abstract_inverted_index.pathways. | 130 |
| abstract_inverted_index.promising | 154 |
| abstract_inverted_index.reviewed. | 160 |
| abstract_inverted_index.routinely | 54 |
| abstract_inverted_index.screening | 84, 117 |
| abstract_inverted_index.synthesis | 129 |
| abstract_inverted_index.algorithms | 61, 139 |
| abstract_inverted_index.associated | 145 |
| abstract_inverted_index.developing | 127 |
| abstract_inverted_index.discovery, | 98 |
| abstract_inverted_index.discussed. | 149 |
| abstract_inverted_index.generation | 73 |
| abstract_inverted_index.processing | 7 |
| abstract_inverted_index.scientific | 18 |
| abstract_inverted_index.techniques | 8, 32, 146 |
| abstract_inverted_index.technology | 4 |
| abstract_inverted_index.candidates. | 42 |
| abstract_inverted_index.development | 38 |
| abstract_inverted_index.efficiency, | 65 |
| abstract_inverted_index.highlighted | 125 |
| abstract_inverted_index.industries. | 21 |
| abstract_inverted_index.information | 3, 121 |
| abstract_inverted_index.reliability | 102 |
| abstract_inverted_index.techniques. | 111 |
| abstract_inverted_index.through-put | 87 |
| abstract_inverted_index.advancements | 1 |
| abstract_inverted_index.applications | 151 |
| abstract_inverted_index.development, | 29 |
| abstract_inverted_index.encompassing | 119 |
| abstract_inverted_index.incorporated | 110 |
| abstract_inverted_index.technologies | 80 |
| abstract_inverted_index.computational | 88 |
| abstract_inverted_index.incorporation | 75 |
| abstract_inverted_index.high-throughput | 83 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5026208292 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I102401767 |
| citation_normalized_percentile.value | 0.99762035 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |