Machine Learning Modeling for Failure Detection of Elevator Doors by Three-Dimensional Video Monitoring Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/access.2020.3037185
High buildings in cities need elevators to transport people in daily life. Therefore, early to detect the occurrence of elevator failures by developing the diagnosis method is significant to ensure people's safety. This paper presents the machine learning procedure for developing the diagnosis method for failure detection of elevator doors. The first step of the procedure is the motion analysis of the elevator doors by three-dimensional video monitoring. The signal from the dynamic distances between the elevator doors versus time is extracted by the image processing to measure the changing distance between elevator doors. The second step is modeling the signal curve by trapezoidal curves from the noised signal data. The third step is to train the classifiers to identify the motion of the elevator doors. Monte Carlo method is used to simulate and create normal and abnormal samples for training classifiers. The failure of detection of the elevator doors can be implemented by using three classifiers, such as K-Nearest Neighbor Classification, Support Vector Machine, and Binary Classification Tree for identification of the dynamical curves of the elevator doors. The results show Binary Classification Tree achieves the classification accuracy (99.28%) that is better than K-Nearest Neighbor and Support Vector Machine. The numbers of features influence the performance of Binary Classification Tree. The results show that the Binary Classification Tree with four features has the best accuracy, and the running speed is 0.51s. The accuracy of the three features has also reached 90.28%, but the running time is 0.24s. The result shows that there is a trade-off between accuracy and time.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2020.3037185
- https://ieeexplore.ieee.org/ielx7/6287639/8948470/09253364.pdf
- OA Status
- gold
- Cited By
- 15
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3102264784
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3102264784Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2020.3037185Digital Object Identifier
- Title
-
Machine Learning Modeling for Failure Detection of Elevator Doors by Three-Dimensional Video MonitoringWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Chih‐Yu Hsu, Yu Qiao, Chenyang Wang, Shuo-Tsung ChenList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2020.3037185Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09253364.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09253364.pdfDirect OA link when available
- Concepts
-
Elevator, Doors, Support vector machine, Computer science, Artificial intelligence, Binary tree, Tree (set theory), Binary classification, k-nearest neighbors algorithm, Computer vision, Decision tree, Pattern recognition (psychology), Machine learning, Algorithm, Engineering, Mathematics, Operating system, Structural engineering, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 3, 2022: 4, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3102264784 |
|---|---|
| doi | https://doi.org/10.1109/access.2020.3037185 |
| ids.doi | https://doi.org/10.1109/access.2020.3037185 |
| ids.mag | 3102264784 |
| ids.openalex | https://openalex.org/W3102264784 |
| fwci | 0.73273977 |
| type | article |
| title | Machine Learning Modeling for Failure Detection of Elevator Doors by Three-Dimensional Video Monitoring |
| biblio.issue | |
| biblio.volume | 8 |
| biblio.last_page | 211609 |
| biblio.first_page | 211595 |
| topics[0].id | https://openalex.org/T14011 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Elevator Systems and Control |
| topics[1].id | https://openalex.org/T12111 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9373999834060669 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Industrial Vision Systems and Defect Detection |
| topics[2].id | https://openalex.org/T12707 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9176999926567078 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Vehicle License Plate Recognition |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C147021018 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9646073579788208 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q252451 |
| concepts[0].display_name | Elevator |
| concepts[1].id | https://openalex.org/C125209513 |
| concepts[1].level | 2 |
| concepts[1].score | 0.9483811855316162 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4037520 |
| concepts[1].display_name | Doors |
| concepts[2].id | https://openalex.org/C12267149 |
| concepts[2].level | 2 |
| concepts[2].score | 0.8027114868164062 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[2].display_name | Support vector machine |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.73668372631073 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6549195051193237 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C197855036 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6218903660774231 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q380172 |
| concepts[5].display_name | Binary tree |
| concepts[6].id | https://openalex.org/C113174947 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5706007480621338 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[6].display_name | Tree (set theory) |
| concepts[7].id | https://openalex.org/C66905080 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5403680205345154 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17005494 |
| concepts[7].display_name | Binary classification |
| concepts[8].id | https://openalex.org/C113238511 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4493652582168579 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071612 |
| concepts[8].display_name | k-nearest neighbors algorithm |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4341801404953003 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C84525736 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42441338300704956 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[10].display_name | Decision tree |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4223892390727997 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3333023190498352 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.17094886302947998 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.14070239663124084 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1382964551448822 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C66938386 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[17].display_name | Structural engineering |
| concepts[18].id | https://openalex.org/C134306372 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[18].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/elevator |
| keywords[0].score | 0.9646073579788208 |
| keywords[0].display_name | Elevator |
| keywords[1].id | https://openalex.org/keywords/doors |
| keywords[1].score | 0.9483811855316162 |
| keywords[1].display_name | Doors |
| keywords[2].id | https://openalex.org/keywords/support-vector-machine |
| keywords[2].score | 0.8027114868164062 |
| keywords[2].display_name | Support vector machine |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.73668372631073 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6549195051193237 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/binary-tree |
| keywords[5].score | 0.6218903660774231 |
| keywords[5].display_name | Binary tree |
| keywords[6].id | https://openalex.org/keywords/tree |
| keywords[6].score | 0.5706007480621338 |
| keywords[6].display_name | Tree (set theory) |
| keywords[7].id | https://openalex.org/keywords/binary-classification |
| keywords[7].score | 0.5403680205345154 |
| keywords[7].display_name | Binary classification |
| keywords[8].id | https://openalex.org/keywords/k-nearest-neighbors-algorithm |
| keywords[8].score | 0.4493652582168579 |
| keywords[8].display_name | k-nearest neighbors algorithm |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.4341801404953003 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/decision-tree |
| keywords[10].score | 0.42441338300704956 |
| keywords[10].display_name | Decision tree |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.4223892390727997 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.3333023190498352 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.17094886302947998 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.14070239663124084 |
| keywords[14].display_name | Engineering |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.1382964551448822 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/access.2020.3037185 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09253364.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2020.3037185 |
| locations[1].id | pmh:oai:doaj.org/article:5a3517109d714a8ab9587e002e743ec0 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 8, Pp 211595-211609 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/5a3517109d714a8ab9587e002e743ec0 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5104636247 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1074-8170 |
| authorships[0].author.display_name | Chih‐Yu Hsu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I83791580 |
| authorships[0].affiliations[0].raw_affiliation_string | Fujian Provincial Key Laboratory of Big Data Mining and Applications, School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I83791580 |
| authorships[0].institutions[0].ror | https://ror.org/03c8fdb16 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I83791580 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Fujian University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chih-Yu Hsu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Fujian Provincial Key Laboratory of Big Data Mining and Applications, School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou, China |
| authorships[1].author.id | https://openalex.org/A5075940186 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9108-4112 |
| authorships[1].author.display_name | Yu Qiao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I80143920 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China |
| authorships[1].institutions[0].id | https://openalex.org/I80143920 |
| authorships[1].institutions[0].ror | https://ror.org/04gtjhw98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I80143920 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shandong University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yu Qiao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China |
| authorships[2].author.id | https://openalex.org/A5100424705 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8706-5354 |
| authorships[2].author.display_name | Chenyang Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I83791580 |
| authorships[2].affiliations[0].raw_affiliation_string | Fujian Provincial Key Laboratory of Big Data Mining and Applications, School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou, China |
| authorships[2].institutions[0].id | https://openalex.org/I83791580 |
| authorships[2].institutions[0].ror | https://ror.org/03c8fdb16 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I83791580 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Fujian University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chenyang Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Fujian Provincial Key Laboratory of Big Data Mining and Applications, School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou, China |
| authorships[3].author.id | https://openalex.org/A5074640532 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0170-4240 |
| authorships[3].author.display_name | Shuo-Tsung Chen |
| authorships[3].countries | TW |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I75357094 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan, R.O.C |
| authorships[3].institutions[0].id | https://openalex.org/I75357094 |
| authorships[3].institutions[0].ror | https://ror.org/04qkq2m54 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I75357094 |
| authorships[3].institutions[0].country_code | TW |
| authorships[3].institutions[0].display_name | National Yunlin University of Science and Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Shuo-Tsung Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan, R.O.C |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09253364.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine Learning Modeling for Failure Detection of Elevator Doors by Three-Dimensional Video Monitoring |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14011 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Elevator Systems and Control |
| related_works | https://openalex.org/W4241837227, https://openalex.org/W1507618586, https://openalex.org/W3016239942, https://openalex.org/W2486091485, https://openalex.org/W1992739161, https://openalex.org/W2990197615, https://openalex.org/W4296481904, https://openalex.org/W2388571181, https://openalex.org/W2104406636, https://openalex.org/W2132937675 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2020.3037185 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09253364.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2020.3037185 |
| primary_location.id | doi:10.1109/access.2020.3037185 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09253364.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2020.3037185 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2065172718, https://openalex.org/W2087940638, https://openalex.org/W2098613108, https://openalex.org/W2122111042, https://openalex.org/W4239510810, https://openalex.org/W2768077571, https://openalex.org/W2734916911, https://openalex.org/W6802569630, https://openalex.org/W4251315812, https://openalex.org/W2765819130, https://openalex.org/W2921691291, https://openalex.org/W1991754200, https://openalex.org/W3011476379, https://openalex.org/W2905439464, https://openalex.org/W2913970727, https://openalex.org/W2944477471, https://openalex.org/W2087347434, https://openalex.org/W2003233718, https://openalex.org/W6605241255, https://openalex.org/W2132987852, https://openalex.org/W3205765220, https://openalex.org/W128754594, https://openalex.org/W2119821739 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 254 |
| abstract_inverted_index.as | 158 |
| abstract_inverted_index.be | 151 |
| abstract_inverted_index.by | 21, 64, 82, 102, 153 |
| abstract_inverted_index.in | 2, 9 |
| abstract_inverted_index.is | 26, 56, 80, 97, 113, 129, 191, 230, 246, 253 |
| abstract_inverted_index.of | 18, 47, 53, 60, 122, 144, 146, 171, 175, 202, 207, 234 |
| abstract_inverted_index.to | 6, 14, 28, 86, 114, 118, 131 |
| abstract_inverted_index.The | 50, 68, 94, 110, 142, 179, 200, 211, 232, 248 |
| abstract_inverted_index.and | 133, 136, 165, 196, 226, 258 |
| abstract_inverted_index.but | 242 |
| abstract_inverted_index.can | 150 |
| abstract_inverted_index.for | 39, 44, 139, 169 |
| abstract_inverted_index.has | 222, 238 |
| abstract_inverted_index.the | 16, 23, 35, 41, 54, 57, 61, 71, 75, 83, 88, 99, 106, 116, 120, 123, 147, 172, 176, 186, 205, 215, 223, 227, 235, 243 |
| abstract_inverted_index.High | 0 |
| abstract_inverted_index.This | 32 |
| abstract_inverted_index.Tree | 168, 184, 218 |
| abstract_inverted_index.also | 239 |
| abstract_inverted_index.best | 224 |
| abstract_inverted_index.four | 220 |
| abstract_inverted_index.from | 70, 105 |
| abstract_inverted_index.need | 4 |
| abstract_inverted_index.show | 181, 213 |
| abstract_inverted_index.step | 52, 96, 112 |
| abstract_inverted_index.such | 157 |
| abstract_inverted_index.than | 193 |
| abstract_inverted_index.that | 190, 214, 251 |
| abstract_inverted_index.time | 79, 245 |
| abstract_inverted_index.used | 130 |
| abstract_inverted_index.with | 219 |
| abstract_inverted_index.Carlo | 127 |
| abstract_inverted_index.Monte | 126 |
| abstract_inverted_index.Tree. | 210 |
| abstract_inverted_index.curve | 101 |
| abstract_inverted_index.daily | 10 |
| abstract_inverted_index.data. | 109 |
| abstract_inverted_index.doors | 63, 77, 149 |
| abstract_inverted_index.early | 13 |
| abstract_inverted_index.first | 51 |
| abstract_inverted_index.image | 84 |
| abstract_inverted_index.life. | 11 |
| abstract_inverted_index.paper | 33 |
| abstract_inverted_index.shows | 250 |
| abstract_inverted_index.speed | 229 |
| abstract_inverted_index.there | 252 |
| abstract_inverted_index.third | 111 |
| abstract_inverted_index.three | 155, 236 |
| abstract_inverted_index.time. | 259 |
| abstract_inverted_index.train | 115 |
| abstract_inverted_index.using | 154 |
| abstract_inverted_index.video | 66 |
| abstract_inverted_index.0.24s. | 247 |
| abstract_inverted_index.0.51s. | 231 |
| abstract_inverted_index.Binary | 166, 182, 208, 216 |
| abstract_inverted_index.Vector | 163, 198 |
| abstract_inverted_index.better | 192 |
| abstract_inverted_index.cities | 3 |
| abstract_inverted_index.create | 134 |
| abstract_inverted_index.curves | 104, 174 |
| abstract_inverted_index.detect | 15 |
| abstract_inverted_index.doors. | 49, 93, 125, 178 |
| abstract_inverted_index.ensure | 29 |
| abstract_inverted_index.method | 25, 43, 128 |
| abstract_inverted_index.motion | 58, 121 |
| abstract_inverted_index.noised | 107 |
| abstract_inverted_index.normal | 135 |
| abstract_inverted_index.people | 8 |
| abstract_inverted_index.result | 249 |
| abstract_inverted_index.second | 95 |
| abstract_inverted_index.signal | 69, 100, 108 |
| abstract_inverted_index.versus | 78 |
| abstract_inverted_index.90.28%, | 241 |
| abstract_inverted_index.Support | 162, 197 |
| abstract_inverted_index.between | 74, 91, 256 |
| abstract_inverted_index.dynamic | 72 |
| abstract_inverted_index.failure | 45, 143 |
| abstract_inverted_index.machine | 36 |
| abstract_inverted_index.measure | 87 |
| abstract_inverted_index.numbers | 201 |
| abstract_inverted_index.reached | 240 |
| abstract_inverted_index.results | 180, 212 |
| abstract_inverted_index.running | 228, 244 |
| abstract_inverted_index.safety. | 31 |
| abstract_inverted_index.samples | 138 |
| abstract_inverted_index.(99.28%) | 189 |
| abstract_inverted_index.Machine, | 164 |
| abstract_inverted_index.Machine. | 199 |
| abstract_inverted_index.Neighbor | 160, 195 |
| abstract_inverted_index.abnormal | 137 |
| abstract_inverted_index.accuracy | 188, 233, 257 |
| abstract_inverted_index.achieves | 185 |
| abstract_inverted_index.analysis | 59 |
| abstract_inverted_index.changing | 89 |
| abstract_inverted_index.distance | 90 |
| abstract_inverted_index.elevator | 19, 48, 62, 76, 92, 124, 148, 177 |
| abstract_inverted_index.failures | 20 |
| abstract_inverted_index.features | 203, 221, 237 |
| abstract_inverted_index.identify | 119 |
| abstract_inverted_index.learning | 37 |
| abstract_inverted_index.modeling | 98 |
| abstract_inverted_index.people's | 30 |
| abstract_inverted_index.presents | 34 |
| abstract_inverted_index.simulate | 132 |
| abstract_inverted_index.training | 140 |
| abstract_inverted_index.K-Nearest | 159, 194 |
| abstract_inverted_index.accuracy, | 225 |
| abstract_inverted_index.buildings | 1 |
| abstract_inverted_index.detection | 46, 145 |
| abstract_inverted_index.diagnosis | 24, 42 |
| abstract_inverted_index.distances | 73 |
| abstract_inverted_index.dynamical | 173 |
| abstract_inverted_index.elevators | 5 |
| abstract_inverted_index.extracted | 81 |
| abstract_inverted_index.influence | 204 |
| abstract_inverted_index.procedure | 38, 55 |
| abstract_inverted_index.trade-off | 255 |
| abstract_inverted_index.transport | 7 |
| abstract_inverted_index.Therefore, | 12 |
| abstract_inverted_index.developing | 22, 40 |
| abstract_inverted_index.occurrence | 17 |
| abstract_inverted_index.processing | 85 |
| abstract_inverted_index.classifiers | 117 |
| abstract_inverted_index.implemented | 152 |
| abstract_inverted_index.monitoring. | 67 |
| abstract_inverted_index.performance | 206 |
| abstract_inverted_index.significant | 27 |
| abstract_inverted_index.trapezoidal | 103 |
| abstract_inverted_index.classifiers, | 156 |
| abstract_inverted_index.classifiers. | 141 |
| abstract_inverted_index.Classification | 167, 183, 209, 217 |
| abstract_inverted_index.classification | 187 |
| abstract_inverted_index.identification | 170 |
| abstract_inverted_index.Classification, | 161 |
| abstract_inverted_index.three-dimensional | 65 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.72348055 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |