Machine Learning Models for 3-Month Outcome Prediction Using Radiomics of Intracerebral Hemorrhage and Perihematomal Edema from Admission Head Computed Tomography (CT) Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/diagnostics14242827
Background: Intracerebral hemorrhages (ICH) and perihematomal edema (PHE) are respective imaging markers of primary and secondary brain injury in hemorrhagic stroke. In this study, we explored the potential added value of PHE radiomic features for prognostication in ICH patients. Methods: Using a multicentric trial cohort of acute supratentorial ICH (n = 852) patients, we extracted radiomic features from ICH and PHE lesions on admission non-contrast head CTs. We trained and tested combinations of different machine learning classifiers and feature selection methods for prediction of poor outcome—defined by 4-to-6 modified Rankin Scale scores at 3-month follow-up—using five different input strategies: (a) ICH radiomics, (b) ICH and PHE radiomics, (c) admission clinical predictors of poor outcomes, (d) ICH radiomics and clinical variables, and (e) ICH and PHE radiomics with clinical variables. Models were trained on 500 patients, tested, and compared in 352 using the receiver operating characteristics Area Under the Curve (AUC), Integrated Discrimination Index (IDI), and Net Reclassification Index (NRI). Results: Comparing the best performing models in the independent test cohort, both IDI and NRI demonstrated better individual-level risk assessment by addition of PHE radiomics as input to ICH radiomics (both p < 0.001), but with insignificant improvement in outcome prediction (AUC of 0.74 versus 0.71, p = 0.157). The addition of ICH and PHE radiomics to clinical variables also improved IDI and NRI risk-classification (both p < 0.001), but with a insignificant increase in AUC of 0.85 versus 0.83 (p = 0.118), respectively. All machine learning models had greater or equal accuracy in outcome prediction compared to the widely used ICH score. Conclusions: The addition of PHE radiomics to hemorrhage lesion radiomics, as well as radiomics to clinical risk factors, can improve individual-level risk assessment, albeit with an insignificant increase in prognostic accuracy. Machine learning models offer quantitative and immediate risk stratification—on par with or more accurate than the ICH score—which can potentially guide patients’ selection for interventions such as hematoma evacuation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/diagnostics14242827
- https://www.mdpi.com/2075-4418/14/24/2827/pdf?version=1734334365
- OA Status
- gold
- Cited By
- 3
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405445652
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405445652Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/diagnostics14242827Digital Object Identifier
- Title
-
Machine Learning Models for 3-Month Outcome Prediction Using Radiomics of Intracerebral Hemorrhage and Perihematomal Edema from Admission Head Computed Tomography (CT)Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-16Full publication date if available
- Authors
-
Fiona Dierksen, J Sommer, Tran Anh Tuan, Huang Lin, Stefan P. Haider, Ilko Maier, Sanjay Aneja, Pina C. Sanelli, Ajay Malhotra, Adnan I. Qureshi, Jan Claassen, Soojin Park, Santosh B. Murthy, Guido J. Falcone, Kevin N. Sheth, Seyedmehdi PayabvashList of authors in order
- Landing page
-
https://doi.org/10.3390/diagnostics14242827Publisher landing page
- PDF URL
-
https://www.mdpi.com/2075-4418/14/24/2827/pdf?version=1734334365Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2075-4418/14/24/2827/pdf?version=1734334365Direct OA link when available
- Concepts
-
Medicine, Intracerebral hemorrhage, Radiomics, Modified Rankin Scale, Receiver operating characteristic, Cohort, Radiology, Internal medicine, Subarachnoid hemorrhage, Ischemic stroke, IschemiaTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405445652 |
|---|---|
| doi | https://doi.org/10.3390/diagnostics14242827 |
| ids.doi | https://doi.org/10.3390/diagnostics14242827 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39767188 |
| ids.openalex | https://openalex.org/W4405445652 |
| fwci | 2.30444913 |
| type | article |
| title | Machine Learning Models for 3-Month Outcome Prediction Using Radiomics of Intracerebral Hemorrhage and Perihematomal Edema from Admission Head Computed Tomography (CT) |
| biblio.issue | 24 |
| biblio.volume | 14 |
| biblio.last_page | 2827 |
| biblio.first_page | 2827 |
| grants[0].funder | https://openalex.org/F4320306134 |
| grants[0].award_id | 2020097 |
| grants[0].funder_display_name | Doris Duke Charitable Foundation |
| topics[0].id | https://openalex.org/T11763 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2728 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Intracerebral and Subarachnoid Hemorrhage Research |
| topics[1].id | https://openalex.org/T10227 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9902999997138977 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2713 |
| topics[1].subfield.display_name | Epidemiology |
| topics[1].display_name | Acute Ischemic Stroke Management |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9865000247955322 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| funders[0].id | https://openalex.org/F4320306134 |
| funders[0].ror | https://ror.org/04n65rp89 |
| funders[0].display_name | Doris Duke Charitable Foundation |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8941009044647217 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C2777094939 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8154693841934204 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1368943 |
| concepts[1].display_name | Intracerebral hemorrhage |
| concepts[2].id | https://openalex.org/C2778559731 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7751392126083374 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q23808793 |
| concepts[2].display_name | Radiomics |
| concepts[3].id | https://openalex.org/C2780931571 |
| concepts[3].level | 4 |
| concepts[3].score | 0.7617663145065308 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q568775 |
| concepts[3].display_name | Modified Rankin Scale |
| concepts[4].id | https://openalex.org/C58471807 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6223145127296448 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[4].display_name | Receiver operating characteristic |
| concepts[5].id | https://openalex.org/C72563966 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4975300133228302 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1303415 |
| concepts[5].display_name | Cohort |
| concepts[6].id | https://openalex.org/C126838900 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4361325204372406 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[6].display_name | Radiology |
| concepts[7].id | https://openalex.org/C126322002 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3195071220397949 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[7].display_name | Internal medicine |
| concepts[8].id | https://openalex.org/C2777736543 |
| concepts[8].level | 2 |
| concepts[8].score | 0.13095346093177795 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q693442 |
| concepts[8].display_name | Subarachnoid hemorrhage |
| concepts[9].id | https://openalex.org/C3020199598 |
| concepts[9].level | 3 |
| concepts[9].score | 0.0848732590675354 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12202 |
| concepts[9].display_name | Ischemic stroke |
| concepts[10].id | https://openalex.org/C541997718 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q188151 |
| concepts[10].display_name | Ischemia |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.8941009044647217 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/intracerebral-hemorrhage |
| keywords[1].score | 0.8154693841934204 |
| keywords[1].display_name | Intracerebral hemorrhage |
| keywords[2].id | https://openalex.org/keywords/radiomics |
| keywords[2].score | 0.7751392126083374 |
| keywords[2].display_name | Radiomics |
| keywords[3].id | https://openalex.org/keywords/modified-rankin-scale |
| keywords[3].score | 0.7617663145065308 |
| keywords[3].display_name | Modified Rankin Scale |
| keywords[4].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[4].score | 0.6223145127296448 |
| keywords[4].display_name | Receiver operating characteristic |
| keywords[5].id | https://openalex.org/keywords/cohort |
| keywords[5].score | 0.4975300133228302 |
| keywords[5].display_name | Cohort |
| keywords[6].id | https://openalex.org/keywords/radiology |
| keywords[6].score | 0.4361325204372406 |
| keywords[6].display_name | Radiology |
| keywords[7].id | https://openalex.org/keywords/internal-medicine |
| keywords[7].score | 0.3195071220397949 |
| keywords[7].display_name | Internal medicine |
| keywords[8].id | https://openalex.org/keywords/subarachnoid-hemorrhage |
| keywords[8].score | 0.13095346093177795 |
| keywords[8].display_name | Subarachnoid hemorrhage |
| keywords[9].id | https://openalex.org/keywords/ischemic-stroke |
| keywords[9].score | 0.0848732590675354 |
| keywords[9].display_name | Ischemic stroke |
| language | en |
| locations[0].id | doi:10.3390/diagnostics14242827 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172076 |
| locations[0].source.issn | 2075-4418 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2075-4418 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Diagnostics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2075-4418/14/24/2827/pdf?version=1734334365 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Diagnostics |
| locations[0].landing_page_url | https://doi.org/10.3390/diagnostics14242827 |
| locations[1].id | pmid:39767188 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Diagnostics (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39767188 |
| locations[2].id | pmh:oai:publications.goettingen-research-online.de:2/147736 |
| locations[2].is_oa | True |
| locations[2].source | |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | yes |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://resolver.sub.uni-goettingen.de/purl?gro-2/147736 |
| locations[3].id | pmh:oai:doaj.org/article:a7e86a7c006f43118dfa5802ab334576 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].source.host_organization_lineage | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Diagnostics, Vol 14, Iss 24, p 2827 (2024) |
| locations[3].landing_page_url | https://doaj.org/article/a7e86a7c006f43118dfa5802ab334576 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:11674633 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Diagnostics (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11674633 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5093661826 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-1913-0603 |
| authorships[0].author.display_name | Fiona Dierksen |
| authorships[0].countries | DE, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210116730 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Neurology, University Medicine Göttingen, 37075 Göttingen, Germany |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I32971472 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[0].institutions[0].id | https://openalex.org/I4210116730 |
| authorships[0].institutions[0].ror | https://ror.org/021ft0n22 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210116730 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Universitätsmedizin Göttingen |
| authorships[0].institutions[1].id | https://openalex.org/I32971472 |
| authorships[0].institutions[1].ror | https://ror.org/03v76x132 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I32971472 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Yale University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fiona Dierksen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Neurology, University Medicine Göttingen, 37075 Göttingen, Germany, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[1].author.id | https://openalex.org/A5068075897 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-1582-2264 |
| authorships[1].author.display_name | J Sommer |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[1].institutions[0].id | https://openalex.org/I32971472 |
| authorships[1].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Yale University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jakob K. Sommer |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[2].author.id | https://openalex.org/A5008770267 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9994-8077 |
| authorships[2].author.display_name | Tran Anh Tuan |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[2].institutions[0].id | https://openalex.org/I32971472 |
| authorships[2].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Yale University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Anh T. Tran |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[3].author.id | https://openalex.org/A5103667163 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Huang Lin |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[3].institutions[0].id | https://openalex.org/I32971472 |
| authorships[3].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Yale University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Huang Lin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[4].author.id | https://openalex.org/A5061882210 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7640-3645 |
| authorships[4].author.display_name | Stefan P. Haider |
| authorships[4].countries | DE, US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I8204097 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, 81377 Munich, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I8204097 |
| authorships[4].institutions[0].ror | https://ror.org/05591te55 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I8204097 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Ludwig-Maximilians-Universität München |
| authorships[4].institutions[1].id | https://openalex.org/I32971472 |
| authorships[4].institutions[1].ror | https://ror.org/03v76x132 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I32971472 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | Yale University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Stefan P. Haider |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, 81377 Munich, Germany, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[5].author.id | https://openalex.org/A5030076054 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6988-8878 |
| authorships[5].author.display_name | Ilko Maier |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210116730 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Neurology, University Medicine Göttingen, 37075 Göttingen, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I4210116730 |
| authorships[5].institutions[0].ror | https://ror.org/021ft0n22 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210116730 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | Universitätsmedizin Göttingen |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ilko L. Maier |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Neurology, University Medicine Göttingen, 37075 Göttingen, Germany |
| authorships[6].author.id | https://openalex.org/A5027831083 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5681-7528 |
| authorships[6].author.display_name | Sanjay Aneja |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[6].institutions[0].id | https://openalex.org/I32971472 |
| authorships[6].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Yale University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Sanjay Aneja |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Radiation Oncology, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[7].author.id | https://openalex.org/A5088627565 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9633-3699 |
| authorships[7].author.display_name | Pina C. Sanelli |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I1327576362 |
| authorships[7].affiliations[0].raw_affiliation_string | Feinstein Institute for Medical Research, Manhasset, New York, NY 11030, USA |
| authorships[7].institutions[0].id | https://openalex.org/I1327576362 |
| authorships[7].institutions[0].ror | https://ror.org/05dnene97 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I1302444339, https://openalex.org/I1327576362 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Feinstein Institute for Medical Research |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Pina C. Sanelli |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Feinstein Institute for Medical Research, Manhasset, New York, NY 11030, USA |
| authorships[8].author.id | https://openalex.org/A5039233998 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-9223-6640 |
| authorships[8].author.display_name | Ajay Malhotra |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[8].institutions[0].id | https://openalex.org/I32971472 |
| authorships[8].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Yale University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Ajay Malhotra |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[9].author.id | https://openalex.org/A5020049468 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-4962-540X |
| authorships[9].author.display_name | Adnan I. Qureshi |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Neurology, Zeenat Qureshi Stroke Institute, University of Missouri, Columbia, MO 65211, USA |
| authorships[9].institutions[0].id | https://openalex.org/I76835614 |
| authorships[9].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | University of Missouri |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Adnan I. Qureshi |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Neurology, Zeenat Qureshi Stroke Institute, University of Missouri, Columbia, MO 65211, USA |
| authorships[10].author.id | https://openalex.org/A5000426332 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-5893-8531 |
| authorships[10].author.display_name | Jan Claassen |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I1340179700, https://openalex.org/I2799503643, https://openalex.org/I2801107848 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Neurology, New York-Presbyterian Hospital, Columbia University Irving Medical Center, Columbia University, New York, NY 10065, USA |
| authorships[10].institutions[0].id | https://openalex.org/I2799503643 |
| authorships[10].institutions[0].ror | https://ror.org/01esghr10 |
| authorships[10].institutions[0].type | healthcare |
| authorships[10].institutions[0].lineage | https://openalex.org/I2799503643 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Columbia University Irving Medical Center |
| authorships[10].institutions[1].id | https://openalex.org/I2801107848 |
| authorships[10].institutions[1].ror | https://ror.org/01j17xg39 |
| authorships[10].institutions[1].type | healthcare |
| authorships[10].institutions[1].lineage | https://openalex.org/I2801107848 |
| authorships[10].institutions[1].country_code | US |
| authorships[10].institutions[1].display_name | New York Hospital Queens |
| authorships[10].institutions[2].id | https://openalex.org/I1340179700 |
| authorships[10].institutions[2].ror | https://ror.org/03gzbrs57 |
| authorships[10].institutions[2].type | healthcare |
| authorships[10].institutions[2].lineage | https://openalex.org/I1340179700 |
| authorships[10].institutions[2].country_code | US |
| authorships[10].institutions[2].display_name | NewYork–Presbyterian Hospital |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Jan Claassen |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Department of Neurology, New York-Presbyterian Hospital, Columbia University Irving Medical Center, Columbia University, New York, NY 10065, USA |
| authorships[11].author.id | https://openalex.org/A5100447403 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-3688-7307 |
| authorships[11].author.display_name | Soojin Park |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[11].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA |
| authorships[11].affiliations[1].institution_ids | https://openalex.org/I1340179700, https://openalex.org/I2799503643, https://openalex.org/I2801107848 |
| authorships[11].affiliations[1].raw_affiliation_string | Department of Neurology, New York-Presbyterian Hospital, Columbia University Irving Medical Center, Columbia University, New York, NY 10065, USA |
| authorships[11].institutions[0].id | https://openalex.org/I78577930 |
| authorships[11].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | Columbia University |
| authorships[11].institutions[1].id | https://openalex.org/I2799503643 |
| authorships[11].institutions[1].ror | https://ror.org/01esghr10 |
| authorships[11].institutions[1].type | healthcare |
| authorships[11].institutions[1].lineage | https://openalex.org/I2799503643 |
| authorships[11].institutions[1].country_code | US |
| authorships[11].institutions[1].display_name | Columbia University Irving Medical Center |
| authorships[11].institutions[2].id | https://openalex.org/I2801107848 |
| authorships[11].institutions[2].ror | https://ror.org/01j17xg39 |
| authorships[11].institutions[2].type | healthcare |
| authorships[11].institutions[2].lineage | https://openalex.org/I2801107848 |
| authorships[11].institutions[2].country_code | US |
| authorships[11].institutions[2].display_name | New York Hospital Queens |
| authorships[11].institutions[3].id | https://openalex.org/I1340179700 |
| authorships[11].institutions[3].ror | https://ror.org/03gzbrs57 |
| authorships[11].institutions[3].type | healthcare |
| authorships[11].institutions[3].lineage | https://openalex.org/I1340179700 |
| authorships[11].institutions[3].country_code | US |
| authorships[11].institutions[3].display_name | NewYork–Presbyterian Hospital |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Soojin Park |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Department of Biomedical Informatics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA, Department of Neurology, New York-Presbyterian Hospital, Columbia University Irving Medical Center, Columbia University, New York, NY 10065, USA |
| authorships[12].author.id | https://openalex.org/A5012130911 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-4950-0992 |
| authorships[12].author.display_name | Santosh B. Murthy |
| authorships[12].countries | US |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[12].affiliations[0].raw_affiliation_string | Department of Neurology, Weill Cornell School of Medicine, New York, NY 10065, USA |
| authorships[12].institutions[0].id | https://openalex.org/I205783295 |
| authorships[12].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[12].institutions[0].type | education |
| authorships[12].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[12].institutions[0].country_code | US |
| authorships[12].institutions[0].display_name | Cornell University |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Santosh B. Murthy |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Department of Neurology, Weill Cornell School of Medicine, New York, NY 10065, USA |
| authorships[13].author.id | https://openalex.org/A5053098139 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-6407-0302 |
| authorships[13].author.display_name | Guido J. Falcone |
| authorships[13].countries | US |
| authorships[13].affiliations[0].raw_affiliation_string | Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[13].affiliations[1].institution_ids | https://openalex.org/I32971472 |
| authorships[13].affiliations[1].raw_affiliation_string | Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[13].institutions[0].id | https://openalex.org/I32971472 |
| authorships[13].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[13].institutions[0].type | education |
| authorships[13].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[13].institutions[0].country_code | US |
| authorships[13].institutions[0].display_name | Yale University |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Guido J. Falcone |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT 06510, USA, Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[14].author.id | https://openalex.org/A5056529805 |
| authorships[14].author.orcid | https://orcid.org/0000-0003-2003-5473 |
| authorships[14].author.display_name | Kevin N. Sheth |
| authorships[14].countries | US |
| authorships[14].affiliations[0].raw_affiliation_string | Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[14].affiliations[1].institution_ids | https://openalex.org/I32971472 |
| authorships[14].affiliations[1].raw_affiliation_string | Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[14].institutions[0].id | https://openalex.org/I32971472 |
| authorships[14].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[14].institutions[0].type | education |
| authorships[14].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[14].institutions[0].country_code | US |
| authorships[14].institutions[0].display_name | Yale University |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Kevin N. Sheth |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT 06510, USA, Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[15].author.id | https://openalex.org/A5057676863 |
| authorships[15].author.orcid | https://orcid.org/0000-0003-4628-0370 |
| authorships[15].author.display_name | Seyedmehdi Payabvash |
| authorships[15].countries | US |
| authorships[15].affiliations[0].institution_ids | https://openalex.org/I1340179700, https://openalex.org/I2799503643, https://openalex.org/I2801107848 |
| authorships[15].affiliations[0].raw_affiliation_string | Department of Radiology, New York-Presbyterian Hospital, Columbia University Irving Medical Center, Columbia University, New York, NY 10065, USA |
| authorships[15].affiliations[1].institution_ids | https://openalex.org/I32971472 |
| authorships[15].affiliations[1].raw_affiliation_string | Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA |
| authorships[15].institutions[0].id | https://openalex.org/I2799503643 |
| authorships[15].institutions[0].ror | https://ror.org/01esghr10 |
| authorships[15].institutions[0].type | healthcare |
| authorships[15].institutions[0].lineage | https://openalex.org/I2799503643 |
| authorships[15].institutions[0].country_code | US |
| authorships[15].institutions[0].display_name | Columbia University Irving Medical Center |
| authorships[15].institutions[1].id | https://openalex.org/I2801107848 |
| authorships[15].institutions[1].ror | https://ror.org/01j17xg39 |
| authorships[15].institutions[1].type | healthcare |
| authorships[15].institutions[1].lineage | https://openalex.org/I2801107848 |
| authorships[15].institutions[1].country_code | US |
| authorships[15].institutions[1].display_name | New York Hospital Queens |
| authorships[15].institutions[2].id | https://openalex.org/I1340179700 |
| authorships[15].institutions[2].ror | https://ror.org/03gzbrs57 |
| authorships[15].institutions[2].type | healthcare |
| authorships[15].institutions[2].lineage | https://openalex.org/I1340179700 |
| authorships[15].institutions[2].country_code | US |
| authorships[15].institutions[2].display_name | NewYork–Presbyterian Hospital |
| authorships[15].institutions[3].id | https://openalex.org/I32971472 |
| authorships[15].institutions[3].ror | https://ror.org/03v76x132 |
| authorships[15].institutions[3].type | education |
| authorships[15].institutions[3].lineage | https://openalex.org/I32971472 |
| authorships[15].institutions[3].country_code | US |
| authorships[15].institutions[3].display_name | Yale University |
| authorships[15].author_position | last |
| authorships[15].raw_author_name | Seyedmehdi Payabvash |
| authorships[15].is_corresponding | True |
| authorships[15].raw_affiliation_strings | Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA, Department of Radiology, New York-Presbyterian Hospital, Columbia University Irving Medical Center, Columbia University, New York, NY 10065, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2075-4418/14/24/2827/pdf?version=1734334365 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine Learning Models for 3-Month Outcome Prediction Using Radiomics of Intracerebral Hemorrhage and Perihematomal Edema from Admission Head Computed Tomography (CT) |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11763 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2728 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Intracerebral and Subarachnoid Hemorrhage Research |
| related_works | https://openalex.org/W3110165264, https://openalex.org/W2401382943, https://openalex.org/W4248242223, https://openalex.org/W4297488898, https://openalex.org/W981722277, https://openalex.org/W2811129757, https://openalex.org/W2261047872, https://openalex.org/W2191922460, https://openalex.org/W2497422762, https://openalex.org/W2922263372 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/diagnostics14242827 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172076 |
| best_oa_location.source.issn | 2075-4418 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2075-4418 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Diagnostics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2075-4418/14/24/2827/pdf?version=1734334365 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Diagnostics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/diagnostics14242827 |
| primary_location.id | doi:10.3390/diagnostics14242827 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172076 |
| primary_location.source.issn | 2075-4418 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2075-4418 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Diagnostics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2075-4418/14/24/2827/pdf?version=1734334365 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Diagnostics |
| primary_location.landing_page_url | https://doi.org/10.3390/diagnostics14242827 |
| publication_date | 2024-12-16 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4296157897, https://openalex.org/W3000213001, https://openalex.org/W2296329450, https://openalex.org/W2615735913, https://openalex.org/W3177271099, https://openalex.org/W4385994551, https://openalex.org/W4376598185, https://openalex.org/W4292451764, https://openalex.org/W1947113872, https://openalex.org/W2891753019, https://openalex.org/W2409181187, https://openalex.org/W4391438399, https://openalex.org/W1901965673, https://openalex.org/W2161703502, https://openalex.org/W2767128594, https://openalex.org/W4211013386, https://openalex.org/W4306850819, https://openalex.org/W2140931881, https://openalex.org/W2071505659, https://openalex.org/W2103798426, https://openalex.org/W1970998115, https://openalex.org/W2027083677, https://openalex.org/W2102470119, https://openalex.org/W2897292178, https://openalex.org/W2966601466, https://openalex.org/W2932580657, https://openalex.org/W2594356997, https://openalex.org/W4224044929, https://openalex.org/W3206246604, https://openalex.org/W2322994866, https://openalex.org/W4316466582, https://openalex.org/W4226105371, https://openalex.org/W4390614288, https://openalex.org/W4225851356 |
| referenced_works_count | 34 |
| abstract_inverted_index.= | 50, 206, 240 |
| abstract_inverted_index.a | 41, 230 |
| abstract_inverted_index.p | 190, 205, 225 |
| abstract_inverted_index.(n | 49 |
| abstract_inverted_index.(p | 239 |
| abstract_inverted_index.In | 21 |
| abstract_inverted_index.We | 67 |
| abstract_inverted_index.an | 287 |
| abstract_inverted_index.as | 184, 272, 274, 319 |
| abstract_inverted_index.at | 92 |
| abstract_inverted_index.by | 86, 179 |
| abstract_inverted_index.in | 18, 36, 138, 165, 197, 233, 252, 290 |
| abstract_inverted_index.of | 12, 30, 45, 72, 83, 111, 181, 201, 210, 235, 265 |
| abstract_inverted_index.on | 62, 132 |
| abstract_inverted_index.or | 249, 304 |
| abstract_inverted_index.to | 186, 215, 256, 268, 276 |
| abstract_inverted_index.we | 24, 53 |
| abstract_inverted_index.(a) | 99 |
| abstract_inverted_index.(b) | 102 |
| abstract_inverted_index.(c) | 107 |
| abstract_inverted_index.(d) | 114 |
| abstract_inverted_index.(e) | 121 |
| abstract_inverted_index.352 | 139 |
| abstract_inverted_index.500 | 133 |
| abstract_inverted_index.AUC | 234 |
| abstract_inverted_index.All | 243 |
| abstract_inverted_index.ICH | 37, 48, 58, 100, 103, 115, 122, 187, 211, 260, 309 |
| abstract_inverted_index.IDI | 171, 220 |
| abstract_inverted_index.NRI | 173, 222 |
| abstract_inverted_index.Net | 155 |
| abstract_inverted_index.PHE | 31, 60, 105, 124, 182, 213, 266 |
| abstract_inverted_index.The | 208, 263 |
| abstract_inverted_index.and | 4, 14, 59, 69, 77, 104, 117, 120, 123, 136, 154, 172, 212, 221, 298 |
| abstract_inverted_index.are | 8 |
| abstract_inverted_index.but | 193, 228 |
| abstract_inverted_index.can | 280, 311 |
| abstract_inverted_index.for | 34, 81, 316 |
| abstract_inverted_index.had | 247 |
| abstract_inverted_index.par | 302 |
| abstract_inverted_index.the | 26, 141, 147, 161, 166, 257, 308 |
| abstract_inverted_index.< | 191, 226 |
| abstract_inverted_index.(AUC | 200 |
| abstract_inverted_index.0.74 | 202 |
| abstract_inverted_index.0.83 | 238 |
| abstract_inverted_index.0.85 | 236 |
| abstract_inverted_index.852) | 51 |
| abstract_inverted_index.Area | 145 |
| abstract_inverted_index.CTs. | 66 |
| abstract_inverted_index.also | 218 |
| abstract_inverted_index.best | 162 |
| abstract_inverted_index.both | 170 |
| abstract_inverted_index.five | 95 |
| abstract_inverted_index.from | 57 |
| abstract_inverted_index.head | 65 |
| abstract_inverted_index.more | 305 |
| abstract_inverted_index.poor | 84, 112 |
| abstract_inverted_index.risk | 177, 278, 283, 300 |
| abstract_inverted_index.such | 318 |
| abstract_inverted_index.test | 168 |
| abstract_inverted_index.than | 307 |
| abstract_inverted_index.this | 22 |
| abstract_inverted_index.used | 259 |
| abstract_inverted_index.well | 273 |
| abstract_inverted_index.were | 130 |
| abstract_inverted_index.with | 126, 194, 229, 286, 303 |
| abstract_inverted_index.(ICH) | 3 |
| abstract_inverted_index.(PHE) | 7 |
| abstract_inverted_index.(both | 189, 224 |
| abstract_inverted_index.0.71, | 204 |
| abstract_inverted_index.Curve | 148 |
| abstract_inverted_index.Index | 152, 157 |
| abstract_inverted_index.Scale | 90 |
| abstract_inverted_index.Under | 146 |
| abstract_inverted_index.Using | 40 |
| abstract_inverted_index.acute | 46 |
| abstract_inverted_index.added | 28 |
| abstract_inverted_index.brain | 16 |
| abstract_inverted_index.edema | 6 |
| abstract_inverted_index.equal | 250 |
| abstract_inverted_index.guide | 313 |
| abstract_inverted_index.input | 97, 185 |
| abstract_inverted_index.offer | 296 |
| abstract_inverted_index.trial | 43 |
| abstract_inverted_index.using | 140 |
| abstract_inverted_index.value | 29 |
| abstract_inverted_index.(AUC), | 149 |
| abstract_inverted_index.(IDI), | 153 |
| abstract_inverted_index.(NRI). | 158 |
| abstract_inverted_index.4-to-6 | 87 |
| abstract_inverted_index.Models | 129 |
| abstract_inverted_index.Rankin | 89 |
| abstract_inverted_index.albeit | 285 |
| abstract_inverted_index.better | 175 |
| abstract_inverted_index.cohort | 44 |
| abstract_inverted_index.injury | 17 |
| abstract_inverted_index.lesion | 270 |
| abstract_inverted_index.models | 164, 246, 295 |
| abstract_inverted_index.score. | 261 |
| abstract_inverted_index.scores | 91 |
| abstract_inverted_index.study, | 23 |
| abstract_inverted_index.tested | 70 |
| abstract_inverted_index.versus | 203, 237 |
| abstract_inverted_index.widely | 258 |
| abstract_inverted_index.0.001), | 192, 227 |
| abstract_inverted_index.0.118), | 241 |
| abstract_inverted_index.0.157). | 207 |
| abstract_inverted_index.3-month | 93 |
| abstract_inverted_index.Machine | 293 |
| abstract_inverted_index.cohort, | 169 |
| abstract_inverted_index.feature | 78 |
| abstract_inverted_index.greater | 248 |
| abstract_inverted_index.imaging | 10 |
| abstract_inverted_index.improve | 281 |
| abstract_inverted_index.lesions | 61 |
| abstract_inverted_index.machine | 74, 244 |
| abstract_inverted_index.markers | 11 |
| abstract_inverted_index.methods | 80 |
| abstract_inverted_index.outcome | 198, 253 |
| abstract_inverted_index.primary | 13 |
| abstract_inverted_index.stroke. | 20 |
| abstract_inverted_index.tested, | 135 |
| abstract_inverted_index.trained | 68, 131 |
| abstract_inverted_index.Methods: | 39 |
| abstract_inverted_index.Results: | 159 |
| abstract_inverted_index.accuracy | 251 |
| abstract_inverted_index.accurate | 306 |
| abstract_inverted_index.addition | 180, 209, 264 |
| abstract_inverted_index.clinical | 109, 118, 127, 216, 277 |
| abstract_inverted_index.compared | 137, 255 |
| abstract_inverted_index.explored | 25 |
| abstract_inverted_index.factors, | 279 |
| abstract_inverted_index.features | 33, 56 |
| abstract_inverted_index.hematoma | 320 |
| abstract_inverted_index.improved | 219 |
| abstract_inverted_index.increase | 232, 289 |
| abstract_inverted_index.learning | 75, 245, 294 |
| abstract_inverted_index.modified | 88 |
| abstract_inverted_index.radiomic | 32, 55 |
| abstract_inverted_index.receiver | 142 |
| abstract_inverted_index.Comparing | 160 |
| abstract_inverted_index.accuracy. | 292 |
| abstract_inverted_index.admission | 63, 108 |
| abstract_inverted_index.different | 73, 96 |
| abstract_inverted_index.extracted | 54 |
| abstract_inverted_index.immediate | 299 |
| abstract_inverted_index.operating | 143 |
| abstract_inverted_index.outcomes, | 113 |
| abstract_inverted_index.patients, | 52, 134 |
| abstract_inverted_index.patients. | 38 |
| abstract_inverted_index.potential | 27 |
| abstract_inverted_index.radiomics | 116, 125, 183, 188, 214, 267, 275 |
| abstract_inverted_index.secondary | 15 |
| abstract_inverted_index.selection | 79, 315 |
| abstract_inverted_index.variables | 217 |
| abstract_inverted_index.Integrated | 150 |
| abstract_inverted_index.assessment | 178 |
| abstract_inverted_index.hemorrhage | 269 |
| abstract_inverted_index.performing | 163 |
| abstract_inverted_index.prediction | 82, 199, 254 |
| abstract_inverted_index.predictors | 110 |
| abstract_inverted_index.prognostic | 291 |
| abstract_inverted_index.radiomics, | 101, 106, 271 |
| abstract_inverted_index.respective | 9 |
| abstract_inverted_index.variables, | 119 |
| abstract_inverted_index.variables. | 128 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.assessment, | 284 |
| abstract_inverted_index.classifiers | 76 |
| abstract_inverted_index.evacuation. | 321 |
| abstract_inverted_index.hemorrhages | 2 |
| abstract_inverted_index.hemorrhagic | 19 |
| abstract_inverted_index.improvement | 196 |
| abstract_inverted_index.independent | 167 |
| abstract_inverted_index.patients’ | 314 |
| abstract_inverted_index.potentially | 312 |
| abstract_inverted_index.strategies: | 98 |
| abstract_inverted_index.Conclusions: | 262 |
| abstract_inverted_index.combinations | 71 |
| abstract_inverted_index.demonstrated | 174 |
| abstract_inverted_index.multicentric | 42 |
| abstract_inverted_index.non-contrast | 64 |
| abstract_inverted_index.quantitative | 297 |
| abstract_inverted_index.Intracerebral | 1 |
| abstract_inverted_index.insignificant | 195, 231, 288 |
| abstract_inverted_index.interventions | 317 |
| abstract_inverted_index.perihematomal | 5 |
| abstract_inverted_index.respectively. | 242 |
| abstract_inverted_index.score—which | 310 |
| abstract_inverted_index.Discrimination | 151 |
| abstract_inverted_index.supratentorial | 47 |
| abstract_inverted_index.characteristics | 144 |
| abstract_inverted_index.prognostication | 35 |
| abstract_inverted_index.Reclassification | 156 |
| abstract_inverted_index.individual-level | 176, 282 |
| abstract_inverted_index.follow-up—using | 94 |
| abstract_inverted_index.outcome—defined | 85 |
| abstract_inverted_index.risk-classification | 223 |
| abstract_inverted_index.stratification—on | 301 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5057676863 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 16 |
| corresponding_institution_ids | https://openalex.org/I1340179700, https://openalex.org/I2799503643, https://openalex.org/I2801107848, https://openalex.org/I32971472 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.84821735 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |