Machine Learning Models for Predicting Freeze–Thaw Damage of Concrete Under Subzero Temperature Curing Conditions Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/ma18122856
In high-elevation or high-latitude permafrost areas, persistent subzero temperatures significantly impact the freeze–thaw durability of concrete structures. Traditional methods for studying the frost resistance of concrete in permafrost regions do not provide a complete picture for predicting properties, and new approaches are needed using, for example, machine learning algorithms. This study utilizes four machine learning models—Support Vector Machine (SVM), extreme learning machine (ELM), long short-term memory (LSTM), and radial basis function neural network (RBFNN)—to predict freeze–thaw damage factors in concrete under low and subzero temperature conservation conditions. Building on the prediction results, the optimal model is refined to develop a new machine learning model: the Sparrow Search Algorithm-optimized Extreme Learning Machine (SSA-ELM). Furthermore, the SHapley Additive exPlanations (SHAP) value analysis method is employed to interpret this model, clarifying the relationship between factors affecting the freezing resistance of concrete and freeze–thaw damage factors. In conclusion, the empirical formula for concrete freeze–thaw damage is compared and validated against the prediction results from the SSA-ELM model. The study results indicate that the SSA-ELM model offers the most accurate predictions for concrete freeze–thaw resistance compared to the SVM, ELM, LSTM, and RBFNN models. SHAP value analysis quantitatively confirms that the number of freeze–thaw cycles is the most significant input parameter affecting the freeze–thaw damage coefficient of concrete. Comparative analysis shows that the accuracy of the SSA-ELMDE prediction set is improved by 15.46%, 9.19%, 21.79%, and 11.76%, respectively, compared with the prediction results of SVM, ELM, LSTM, and RBF. This parameter positively influences the prediction results for the freeze–thaw damage coefficient. Curing humidity has the least influence on the freeze–thaw damage factor of concrete. Comparing the prediction results with empirical formulas shows that the machine learning model provides more accurate predictions. This introduces a new approach for predicting the extent of freeze–thaw damage to concrete under low and subzero temperature conservation conditions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/ma18122856
- https://www.mdpi.com/1996-1944/18/12/2856/pdf?version=1750155525
- OA Status
- gold
- Cited By
- 1
- References
- 56
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411377705
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411377705Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/ma18122856Digital Object Identifier
- Title
-
Machine Learning Models for Predicting Freeze–Thaw Damage of Concrete Under Subzero Temperature Curing ConditionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-17Full publication date if available
- Authors
-
Yanhua Zhao, Bo Yang, Kai Zhang, Aojun Guo, Yonghui Yu, Su ChenList of authors in order
- Landing page
-
https://doi.org/10.3390/ma18122856Publisher landing page
- PDF URL
-
https://www.mdpi.com/1996-1944/18/12/2856/pdf?version=1750155525Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1996-1944/18/12/2856/pdf?version=1750155525Direct OA link when available
- Concepts
-
Curing (chemistry), Materials science, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
56Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411377705 |
|---|---|
| doi | https://doi.org/10.3390/ma18122856 |
| ids.doi | https://doi.org/10.3390/ma18122856 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40572987 |
| ids.openalex | https://openalex.org/W4411377705 |
| fwci | 2.39630643 |
| type | article |
| title | Machine Learning Models for Predicting Freeze–Thaw Damage of Concrete Under Subzero Temperature Curing Conditions |
| awards[0].id | https://openalex.org/G5003981889 |
| awards[0].funder_id | https://openalex.org/F4320321543 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2021M703466 |
| awards[0].funder_display_name | China Postdoctoral Science Foundation |
| awards[1].id | https://openalex.org/G3849768465 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 42461011 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 12 |
| biblio.volume | 18 |
| biblio.last_page | 2856 |
| biblio.first_page | 2856 |
| topics[0].id | https://openalex.org/T12152 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9969000220298767 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Concrete Properties and Behavior |
| topics[1].id | https://openalex.org/T10033 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9969000220298767 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Concrete and Cement Materials Research |
| topics[2].id | https://openalex.org/T10687 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9959999918937683 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Innovative concrete reinforcement materials |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320321543 |
| funders[1].ror | https://ror.org/0426zh255 |
| funders[1].display_name | China Postdoctoral Science Foundation |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C132976073 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8285932540893555 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2991861 |
| concepts[0].display_name | Curing (chemistry) |
| concepts[1].id | https://openalex.org/C192562407 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6211426258087158 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[1].display_name | Materials science |
| concepts[2].id | https://openalex.org/C159985019 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6146016120910645 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[2].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/curing |
| keywords[0].score | 0.8285932540893555 |
| keywords[0].display_name | Curing (chemistry) |
| keywords[1].id | https://openalex.org/keywords/materials-science |
| keywords[1].score | 0.6211426258087158 |
| keywords[1].display_name | Materials science |
| keywords[2].id | https://openalex.org/keywords/composite-material |
| keywords[2].score | 0.6146016120910645 |
| keywords[2].display_name | Composite material |
| language | en |
| locations[0].id | doi:10.3390/ma18122856 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S18714766 |
| locations[0].source.issn | 1996-1944 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1996-1944 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Materials |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1996-1944/18/12/2856/pdf?version=1750155525 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Materials |
| locations[0].landing_page_url | https://doi.org/10.3390/ma18122856 |
| locations[1].id | pmid:40572987 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Materials (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40572987 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:12194813 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Materials (Basel) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12194813 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5008094362 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yanhua Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3133134087 |
| authorships[0].affiliations[0].raw_affiliation_string | Civil Engineering Department, Lanzhou Jiaotong University, Lanzhou 730070, China |
| authorships[0].institutions[0].id | https://openalex.org/I3133134087 |
| authorships[0].institutions[0].ror | https://ror.org/03144pv92 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3133134087 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Lanzhou Jiaotong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yanhua Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Civil Engineering Department, Lanzhou Jiaotong University, Lanzhou 730070, China |
| authorships[1].author.id | https://openalex.org/A5004170976 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7653-3976 |
| authorships[1].author.display_name | Bo Yang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3133134087 |
| authorships[1].affiliations[0].raw_affiliation_string | Civil Engineering Department, Lanzhou Jiaotong University, Lanzhou 730070, China |
| authorships[1].institutions[0].id | https://openalex.org/I3133134087 |
| authorships[1].institutions[0].ror | https://ror.org/03144pv92 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3133134087 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Lanzhou Jiaotong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bo Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Civil Engineering Department, Lanzhou Jiaotong University, Lanzhou 730070, China |
| authorships[2].author.id | https://openalex.org/A5100671104 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0457-6368 |
| authorships[2].author.display_name | Kai Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210106526 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730030, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I3133134087 |
| authorships[2].affiliations[1].raw_affiliation_string | Civil Engineering Department, Lanzhou Jiaotong University, Lanzhou 730070, China |
| authorships[2].institutions[0].id | https://openalex.org/I19820366 |
| authorships[2].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[2].institutions[1].id | https://openalex.org/I3133134087 |
| authorships[2].institutions[1].ror | https://ror.org/03144pv92 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I3133134087 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Lanzhou Jiaotong University |
| authorships[2].institutions[2].id | https://openalex.org/I4210106526 |
| authorships[2].institutions[2].ror | https://ror.org/01jz1e142 |
| authorships[2].institutions[2].type | facility |
| authorships[2].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210106526 |
| authorships[2].institutions[2].country_code | CN |
| authorships[2].institutions[2].display_name | Northwest Institute of Eco-Environment and Resources |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kai Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Civil Engineering Department, Lanzhou Jiaotong University, Lanzhou 730070, China, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730030, China |
| authorships[3].author.id | https://openalex.org/A5079407570 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3472-7104 |
| authorships[3].author.display_name | Aojun Guo |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3133134087 |
| authorships[3].affiliations[0].raw_affiliation_string | Civil Engineering Department, Lanzhou Jiaotong University, Lanzhou 730070, China |
| authorships[3].institutions[0].id | https://openalex.org/I3133134087 |
| authorships[3].institutions[0].ror | https://ror.org/03144pv92 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I3133134087 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Lanzhou Jiaotong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Aojun Guo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Civil Engineering Department, Lanzhou Jiaotong University, Lanzhou 730070, China |
| authorships[4].author.id | https://openalex.org/A5100939812 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yonghui Yu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I3133134087 |
| authorships[4].affiliations[0].raw_affiliation_string | Civil Engineering Department, Lanzhou Jiaotong University, Lanzhou 730070, China |
| authorships[4].institutions[0].id | https://openalex.org/I3133134087 |
| authorships[4].institutions[0].ror | https://ror.org/03144pv92 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I3133134087 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Lanzhou Jiaotong University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yonghui Yu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Civil Engineering Department, Lanzhou Jiaotong University, Lanzhou 730070, China |
| authorships[5].author.id | https://openalex.org/A5100367516 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3799-469X |
| authorships[5].author.display_name | Su Chen |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210116886 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Railways and Architecture, Chongqing Vocational College of Public Transportation, Chongqing 402247, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210116886 |
| authorships[5].institutions[0].ror | https://ror.org/0279ehd23 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210116886 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chongqing Vocational Institute of Engineering |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Li Chen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Railways and Architecture, Chongqing Vocational College of Public Transportation, Chongqing 402247, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1996-1944/18/12/2856/pdf?version=1750155525 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine Learning Models for Predicting Freeze–Thaw Damage of Concrete Under Subzero Temperature Curing Conditions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12152 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9969000220298767 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Concrete Properties and Behavior |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W4404995717, https://openalex.org/W2016187641, https://openalex.org/W4404725684, https://openalex.org/W4246450666, https://openalex.org/W4388998267, https://openalex.org/W4409278740, https://openalex.org/W2898370298, https://openalex.org/W4410118003, https://openalex.org/W2137437058 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/ma18122856 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S18714766 |
| best_oa_location.source.issn | 1996-1944 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1996-1944 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Materials |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1996-1944/18/12/2856/pdf?version=1750155525 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Materials |
| best_oa_location.landing_page_url | https://doi.org/10.3390/ma18122856 |
| primary_location.id | doi:10.3390/ma18122856 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S18714766 |
| primary_location.source.issn | 1996-1944 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1996-1944 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Materials |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1996-1944/18/12/2856/pdf?version=1750155525 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Materials |
| primary_location.landing_page_url | https://doi.org/10.3390/ma18122856 |
| publication_date | 2025-06-17 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4306935894, https://openalex.org/W4310214327, https://openalex.org/W4385861696, https://openalex.org/W4315977451, https://openalex.org/W4389117256, https://openalex.org/W4319335512, https://openalex.org/W4311142532, https://openalex.org/W4320168663, https://openalex.org/W4383336724, https://openalex.org/W4388343276, https://openalex.org/W4386395455, https://openalex.org/W6839895667, https://openalex.org/W4221051647, https://openalex.org/W4292955862, https://openalex.org/W4404932246, https://openalex.org/W4409516359, https://openalex.org/W6880109277, https://openalex.org/W4368367112, https://openalex.org/W4214534528, https://openalex.org/W3026128433, https://openalex.org/W4405093355, https://openalex.org/W4407606126, https://openalex.org/W4408995435, https://openalex.org/W4408562504, https://openalex.org/W4405312764, https://openalex.org/W4379767406, https://openalex.org/W4319437371, https://openalex.org/W4309709481, https://openalex.org/W4317569508, https://openalex.org/W4311571047, https://openalex.org/W4311768397, https://openalex.org/W4207022764, https://openalex.org/W4389917027, https://openalex.org/W4401241647, https://openalex.org/W4318617110, https://openalex.org/W4313593261, https://openalex.org/W4385235923, https://openalex.org/W3207446388, https://openalex.org/W4310725354, https://openalex.org/W4311498863, https://openalex.org/W4388571829, https://openalex.org/W6802727835, https://openalex.org/W4224274569, https://openalex.org/W4376879762, https://openalex.org/W6800592019, https://openalex.org/W3207066068, https://openalex.org/W4283077289, https://openalex.org/W4362704886, https://openalex.org/W4379203926, https://openalex.org/W4322755771, https://openalex.org/W6848688880, https://openalex.org/W4313530577, https://openalex.org/W3198148990, https://openalex.org/W3206453894, https://openalex.org/W4410042186, https://openalex.org/W4285736717 |
| referenced_works_count | 56 |
| abstract_inverted_index.a | 32, 99, 288 |
| abstract_inverted_index.In | 0, 142 |
| abstract_inverted_index.by | 226 |
| abstract_inverted_index.do | 29 |
| abstract_inverted_index.in | 26, 78 |
| abstract_inverted_index.is | 95, 121, 151, 200, 224 |
| abstract_inverted_index.of | 14, 24, 136, 197, 211, 219, 238, 267, 295 |
| abstract_inverted_index.on | 88, 262 |
| abstract_inverted_index.or | 2 |
| abstract_inverted_index.to | 97, 123, 181, 298 |
| abstract_inverted_index.The | 163 |
| abstract_inverted_index.and | 38, 67, 82, 138, 153, 186, 230, 242, 302 |
| abstract_inverted_index.are | 41 |
| abstract_inverted_index.for | 19, 35, 44, 147, 176, 251, 291 |
| abstract_inverted_index.has | 258 |
| abstract_inverted_index.low | 81, 301 |
| abstract_inverted_index.new | 39, 100, 289 |
| abstract_inverted_index.not | 30 |
| abstract_inverted_index.set | 223 |
| abstract_inverted_index.the | 11, 21, 89, 92, 104, 113, 128, 133, 144, 156, 160, 168, 172, 182, 195, 201, 207, 217, 220, 235, 248, 252, 259, 263, 270, 278, 293 |
| abstract_inverted_index.ELM, | 184, 240 |
| abstract_inverted_index.RBF. | 243 |
| abstract_inverted_index.SHAP | 189 |
| abstract_inverted_index.SVM, | 183, 239 |
| abstract_inverted_index.This | 49, 244, 286 |
| abstract_inverted_index.four | 52 |
| abstract_inverted_index.from | 159 |
| abstract_inverted_index.long | 63 |
| abstract_inverted_index.more | 283 |
| abstract_inverted_index.most | 173, 202 |
| abstract_inverted_index.that | 167, 194, 216, 277 |
| abstract_inverted_index.this | 125 |
| abstract_inverted_index.with | 234, 273 |
| abstract_inverted_index.LSTM, | 185, 241 |
| abstract_inverted_index.RBFNN | 187 |
| abstract_inverted_index.basis | 69 |
| abstract_inverted_index.frost | 22 |
| abstract_inverted_index.input | 204 |
| abstract_inverted_index.least | 260 |
| abstract_inverted_index.model | 94, 170, 281 |
| abstract_inverted_index.shows | 215, 276 |
| abstract_inverted_index.study | 50, 164 |
| abstract_inverted_index.under | 80, 300 |
| abstract_inverted_index.value | 118, 190 |
| abstract_inverted_index.(ELM), | 62 |
| abstract_inverted_index.(SHAP) | 117 |
| abstract_inverted_index.(SVM), | 58 |
| abstract_inverted_index.9.19%, | 228 |
| abstract_inverted_index.Curing | 256 |
| abstract_inverted_index.Search | 106 |
| abstract_inverted_index.Vector | 56 |
| abstract_inverted_index.areas, | 5 |
| abstract_inverted_index.cycles | 199 |
| abstract_inverted_index.damage | 76, 140, 150, 209, 254, 265, 297 |
| abstract_inverted_index.extent | 294 |
| abstract_inverted_index.factor | 266 |
| abstract_inverted_index.impact | 10 |
| abstract_inverted_index.memory | 65 |
| abstract_inverted_index.method | 120 |
| abstract_inverted_index.model, | 126 |
| abstract_inverted_index.model. | 162 |
| abstract_inverted_index.model: | 103 |
| abstract_inverted_index.needed | 42 |
| abstract_inverted_index.neural | 71 |
| abstract_inverted_index.number | 196 |
| abstract_inverted_index.offers | 171 |
| abstract_inverted_index.radial | 68 |
| abstract_inverted_index.using, | 43 |
| abstract_inverted_index.(LSTM), | 66 |
| abstract_inverted_index.11.76%, | 231 |
| abstract_inverted_index.15.46%, | 227 |
| abstract_inverted_index.21.79%, | 229 |
| abstract_inverted_index.Extreme | 108 |
| abstract_inverted_index.Machine | 57, 110 |
| abstract_inverted_index.SHapley | 114 |
| abstract_inverted_index.SSA-ELM | 161, 169 |
| abstract_inverted_index.Sparrow | 105 |
| abstract_inverted_index.against | 155 |
| abstract_inverted_index.between | 130 |
| abstract_inverted_index.develop | 98 |
| abstract_inverted_index.extreme | 59 |
| abstract_inverted_index.factors | 77, 131 |
| abstract_inverted_index.formula | 146 |
| abstract_inverted_index.machine | 46, 53, 61, 101, 279 |
| abstract_inverted_index.methods | 18 |
| abstract_inverted_index.models. | 188 |
| abstract_inverted_index.network | 72 |
| abstract_inverted_index.optimal | 93 |
| abstract_inverted_index.picture | 34 |
| abstract_inverted_index.predict | 74 |
| abstract_inverted_index.provide | 31 |
| abstract_inverted_index.refined | 96 |
| abstract_inverted_index.regions | 28 |
| abstract_inverted_index.results | 158, 165, 237, 250, 272 |
| abstract_inverted_index.subzero | 7, 83, 303 |
| abstract_inverted_index.Additive | 115 |
| abstract_inverted_index.Building | 87 |
| abstract_inverted_index.Learning | 109 |
| abstract_inverted_index.accuracy | 218 |
| abstract_inverted_index.accurate | 174, 284 |
| abstract_inverted_index.analysis | 119, 191, 214 |
| abstract_inverted_index.approach | 290 |
| abstract_inverted_index.compared | 152, 180, 233 |
| abstract_inverted_index.complete | 33 |
| abstract_inverted_index.concrete | 15, 25, 79, 137, 148, 177, 299 |
| abstract_inverted_index.confirms | 193 |
| abstract_inverted_index.employed | 122 |
| abstract_inverted_index.example, | 45 |
| abstract_inverted_index.factors. | 141 |
| abstract_inverted_index.formulas | 275 |
| abstract_inverted_index.freezing | 134 |
| abstract_inverted_index.function | 70 |
| abstract_inverted_index.humidity | 257 |
| abstract_inverted_index.improved | 225 |
| abstract_inverted_index.indicate | 166 |
| abstract_inverted_index.learning | 47, 54, 60, 102, 280 |
| abstract_inverted_index.provides | 282 |
| abstract_inverted_index.results, | 91 |
| abstract_inverted_index.studying | 20 |
| abstract_inverted_index.utilizes | 51 |
| abstract_inverted_index.Comparing | 269 |
| abstract_inverted_index.SSA-ELMDE | 221 |
| abstract_inverted_index.affecting | 132, 206 |
| abstract_inverted_index.concrete. | 212, 268 |
| abstract_inverted_index.empirical | 145, 274 |
| abstract_inverted_index.influence | 261 |
| abstract_inverted_index.interpret | 124 |
| abstract_inverted_index.parameter | 205, 245 |
| abstract_inverted_index.validated | 154 |
| abstract_inverted_index.(SSA-ELM). | 111 |
| abstract_inverted_index.approaches | 40 |
| abstract_inverted_index.clarifying | 127 |
| abstract_inverted_index.durability | 13 |
| abstract_inverted_index.influences | 247 |
| abstract_inverted_index.introduces | 287 |
| abstract_inverted_index.permafrost | 4, 27 |
| abstract_inverted_index.persistent | 6 |
| abstract_inverted_index.positively | 246 |
| abstract_inverted_index.predicting | 36, 292 |
| abstract_inverted_index.prediction | 90, 157, 222, 236, 249, 271 |
| abstract_inverted_index.resistance | 23, 135, 179 |
| abstract_inverted_index.short-term | 64 |
| abstract_inverted_index.Comparative | 213 |
| abstract_inverted_index.Traditional | 17 |
| abstract_inverted_index.algorithms. | 48 |
| abstract_inverted_index.coefficient | 210 |
| abstract_inverted_index.conclusion, | 143 |
| abstract_inverted_index.conditions. | 86, 306 |
| abstract_inverted_index.predictions | 175 |
| abstract_inverted_index.properties, | 37 |
| abstract_inverted_index.significant | 203 |
| abstract_inverted_index.structures. | 16 |
| abstract_inverted_index.temperature | 84, 304 |
| abstract_inverted_index.(RBFNN)—to | 73 |
| abstract_inverted_index.Furthermore, | 112 |
| abstract_inverted_index.coefficient. | 255 |
| abstract_inverted_index.conservation | 85, 305 |
| abstract_inverted_index.exPlanations | 116 |
| abstract_inverted_index.predictions. | 285 |
| abstract_inverted_index.relationship | 129 |
| abstract_inverted_index.temperatures | 8 |
| abstract_inverted_index.freeze–thaw | 12, 75, 139, 149, 178, 198, 208, 253, 264, 296 |
| abstract_inverted_index.high-latitude | 3 |
| abstract_inverted_index.respectively, | 232 |
| abstract_inverted_index.significantly | 9 |
| abstract_inverted_index.high-elevation | 1 |
| abstract_inverted_index.quantitatively | 192 |
| abstract_inverted_index.models—Support | 55 |
| abstract_inverted_index.Algorithm-optimized | 107 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.81571319 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |