Machine learning prediction of recycled concrete powder with experimental validation and life cycle assessment study Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.cscm.2024.e04053
The environmental effect of the construction sector has recently drawn attention, leading to research which promotes sustainability. Therefore, different researcher recommends different alternative materials such as fly ash, waste glass red mud and solid waste. Environmental sustainability and mechanical performance are two major concerns in the construction industry. Furthermore, the complex internal relationships between the components of such concrete determine the mix design, which is crucial for attaining the required compressive strength. This study addresses two key issues associated with the current concrete production. First, it uses recycled concrete powder (RCP) as a cement replacement (0 %, 5 %, 10 %, and 15 %) to promote sustainability and the undesirable impact of cement on the environment. Secondly, it proposes a predictive model based on machine learning for the compressive strength of RCP based concrete. A comprehensive dataset containing 270 experimental data points was compiled to train and test various machine learning (ML) models. The experimental results indicated that the optimum RCP mix with 10 % replacement, achieved a compressive strength that was 15.8 % higher than that of the reference concrete without RCP. Furthermore, scanning electronic microscopy indicates that internal structure improved with RCP due to filling and pozzolanic reaction. ML models indicate that Gradient Boosting was found to be the most precise, exhibiting the highest coefficient of determination with the lowest values for root mean squared error and mean absolute error. These findings provide valuable insights for engineers, contractors, and stakeholders, facilitating enhanced design optimization and promoting the efficient use of resources in concrete construction projects.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.cscm.2024.e04053
- OA Status
- gold
- Cited By
- 30
- References
- 124
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404811169
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404811169Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.cscm.2024.e04053Digital Object Identifier
- Title
-
Machine learning prediction of recycled concrete powder with experimental validation and life cycle assessment studyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-28Full publication date if available
- Authors
-
Aneel Manan, Pu Zhang, Weiyi Chen, Jawad Ahmad, Wael Alattyih, Muhammad Umar, Hamad AlmujibahList of authors in order
- Landing page
-
https://doi.org/10.1016/j.cscm.2024.e04053Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.cscm.2024.e04053Direct OA link when available
- Concepts
-
Life-cycle assessment, Machine learning, Materials science, Artificial intelligence, Environmental science, Computer science, Economics, Production (economics), MacroeconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
30Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 30Per-year citation counts (last 5 years)
- References (count)
-
124Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404811169 |
|---|---|
| doi | https://doi.org/10.1016/j.cscm.2024.e04053 |
| ids.doi | https://doi.org/10.1016/j.cscm.2024.e04053 |
| ids.openalex | https://openalex.org/W4404811169 |
| fwci | 16.19923285 |
| type | article |
| title | Machine learning prediction of recycled concrete powder with experimental validation and life cycle assessment study |
| awards[0].id | https://openalex.org/G4742089874 |
| awards[0].funder_id | https://openalex.org/F4320323722 |
| awards[0].display_name | |
| awards[0].funder_award_id | TU-DSPP-2024-33 |
| awards[0].funder_display_name | Taif University |
| biblio.issue | |
| biblio.volume | 21 |
| biblio.last_page | e04053 |
| biblio.first_page | e04053 |
| topics[0].id | https://openalex.org/T11847 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Recycled Aggregate Concrete Performance |
| topics[1].id | https://openalex.org/T10687 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9927999973297119 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Innovative concrete reinforcement materials |
| topics[2].id | https://openalex.org/T10264 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9824000000953674 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Asphalt Pavement Performance Evaluation |
| funders[0].id | https://openalex.org/F4320323722 |
| funders[0].ror | https://ror.org/014g1a453 |
| funders[0].display_name | Taif University |
| is_xpac | False |
| apc_list.value | 600 |
| apc_list.currency | USD |
| apc_list.value_usd | 600 |
| apc_paid.value | 600 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 600 |
| concepts[0].id | https://openalex.org/C2778706760 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5404850244522095 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q581950 |
| concepts[0].display_name | Life-cycle assessment |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.3695530295372009 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C192562407 |
| concepts[2].level | 0 |
| concepts[2].score | 0.33074939250946045 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[2].display_name | Materials science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.32965153455734253 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C39432304 |
| concepts[4].level | 0 |
| concepts[4].score | 0.32170364260673523 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[4].display_name | Environmental science |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3061254024505615 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C162324750 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[6].display_name | Economics |
| concepts[7].id | https://openalex.org/C2778348673 |
| concepts[7].level | 2 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q739302 |
| concepts[7].display_name | Production (economics) |
| concepts[8].id | https://openalex.org/C139719470 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q39680 |
| concepts[8].display_name | Macroeconomics |
| keywords[0].id | https://openalex.org/keywords/life-cycle-assessment |
| keywords[0].score | 0.5404850244522095 |
| keywords[0].display_name | Life-cycle assessment |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.3695530295372009 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/materials-science |
| keywords[2].score | 0.33074939250946045 |
| keywords[2].display_name | Materials science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.32965153455734253 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/environmental-science |
| keywords[4].score | 0.32170364260673523 |
| keywords[4].display_name | Environmental science |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.3061254024505615 |
| keywords[5].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1016/j.cscm.2024.e04053 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764881959 |
| locations[0].source.issn | 2214-5095 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2214-5095 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Case Studies in Construction Materials |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Case Studies in Construction Materials |
| locations[0].landing_page_url | https://doi.org/10.1016/j.cscm.2024.e04053 |
| locations[1].id | pmh:oai:doaj.org/article:f78981f3f1e94ee59b575b31e5d6a8b4 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Case Studies in Construction Materials, Vol 21, Iss , Pp e04053- (2024) |
| locations[1].landing_page_url | https://doaj.org/article/f78981f3f1e94ee59b575b31e5d6a8b4 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5034157837 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2933-3939 |
| authorships[0].author.display_name | Aneel Manan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Aneel Manan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5021208108 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1205-3826 |
| authorships[1].author.display_name | Pu Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang Pu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100731420 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1702-5653 |
| authorships[2].author.display_name | Weiyi Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen Weiyi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100754273 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6289-8248 |
| authorships[3].author.display_name | Jawad Ahmad |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jawad Ahmad |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5037300389 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3257-6237 |
| authorships[4].author.display_name | Wael Alattyih |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wael Alattyih |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5013790727 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7036-9781 |
| authorships[5].author.display_name | Muhammad Umar |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Muhammad Umar |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5036158958 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1676-6222 |
| authorships[6].author.display_name | Hamad Almujibah |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Hamad Almujibah |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.cscm.2024.e04053 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine learning prediction of recycled concrete powder with experimental validation and life cycle assessment study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11847 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Recycled Aggregate Concrete Performance |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 30 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 30 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.cscm.2024.e04053 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764881959 |
| best_oa_location.source.issn | 2214-5095 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2214-5095 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Case Studies in Construction Materials |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Case Studies in Construction Materials |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.cscm.2024.e04053 |
| primary_location.id | doi:10.1016/j.cscm.2024.e04053 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764881959 |
| primary_location.source.issn | 2214-5095 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2214-5095 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Case Studies in Construction Materials |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Case Studies in Construction Materials |
| primary_location.landing_page_url | https://doi.org/10.1016/j.cscm.2024.e04053 |
| publication_date | 2024-11-28 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3173145024, https://openalex.org/W2741482663, https://openalex.org/W2967091267, https://openalex.org/W4388574747, https://openalex.org/W1984459184, https://openalex.org/W2073497113, https://openalex.org/W4224077209, https://openalex.org/W2029126466, https://openalex.org/W4391484234, https://openalex.org/W4391707467, https://openalex.org/W4386891471, https://openalex.org/W2060027269, https://openalex.org/W1979701602, https://openalex.org/W6861427731, https://openalex.org/W6860620758, https://openalex.org/W6810184360, https://openalex.org/W3083656568, https://openalex.org/W4290065395, https://openalex.org/W1972375865, https://openalex.org/W4399565301, https://openalex.org/W4401688167, https://openalex.org/W4399677186, https://openalex.org/W4400136495, https://openalex.org/W3100444376, https://openalex.org/W3001133293, https://openalex.org/W3131046868, https://openalex.org/W6757063008, https://openalex.org/W3013155739, https://openalex.org/W2788697198, https://openalex.org/W3214541433, https://openalex.org/W6849148597, https://openalex.org/W6861727801, https://openalex.org/W2164920755, https://openalex.org/W2914551577, https://openalex.org/W3117440001, https://openalex.org/W2063629125, https://openalex.org/W2024898396, https://openalex.org/W2010773153, https://openalex.org/W6650588762, https://openalex.org/W2007599093, https://openalex.org/W2082123627, https://openalex.org/W1488328403, https://openalex.org/W6846876935, https://openalex.org/W6760929417, https://openalex.org/W4401644724, https://openalex.org/W4212885435, https://openalex.org/W2914059476, https://openalex.org/W3022636885, https://openalex.org/W2570130824, https://openalex.org/W6811531182, https://openalex.org/W6793649439, https://openalex.org/W3128583052, https://openalex.org/W3203374485, https://openalex.org/W6784048022, https://openalex.org/W6804615065, https://openalex.org/W2801118399, https://openalex.org/W3174017820, https://openalex.org/W3110971169, https://openalex.org/W3175568202, https://openalex.org/W2958283459, https://openalex.org/W4200584684, https://openalex.org/W3137563030, https://openalex.org/W6843116238, https://openalex.org/W2996920233, https://openalex.org/W4293101485, https://openalex.org/W6795791829, https://openalex.org/W4293537763, https://openalex.org/W4296010621, https://openalex.org/W6807180389, https://openalex.org/W4294755880, https://openalex.org/W3198832287, https://openalex.org/W2569461028, https://openalex.org/W3039517641, https://openalex.org/W3032704057, https://openalex.org/W4207034907, https://openalex.org/W2901261804, https://openalex.org/W4293169088, https://openalex.org/W6826282001, https://openalex.org/W4297957988, https://openalex.org/W3013330736, https://openalex.org/W2295598076, https://openalex.org/W2088794999, https://openalex.org/W2290145898, https://openalex.org/W2073404525, https://openalex.org/W2041779820, https://openalex.org/W3183906975, https://openalex.org/W2566958870, https://openalex.org/W6761025135, https://openalex.org/W2989305098, https://openalex.org/W1024892110, https://openalex.org/W577431946, https://openalex.org/W2009569612, https://openalex.org/W2029130311, https://openalex.org/W2023168822, https://openalex.org/W6749283005, https://openalex.org/W2147058642, https://openalex.org/W2188625421, https://openalex.org/W2145190316, https://openalex.org/W2282348805, https://openalex.org/W1991643058, https://openalex.org/W2160114338, https://openalex.org/W4210765079, https://openalex.org/W2041454720, https://openalex.org/W2041290739, https://openalex.org/W4391255962, https://openalex.org/W3092034230, https://openalex.org/W4391489817, https://openalex.org/W4225273011, https://openalex.org/W3154469442, https://openalex.org/W3163878822, https://openalex.org/W3216944694, https://openalex.org/W2001705326, https://openalex.org/W4317569539, https://openalex.org/W4226538131, https://openalex.org/W4297327683, https://openalex.org/W641959581, https://openalex.org/W2921910374, https://openalex.org/W2916784570, https://openalex.org/W4206939455, https://openalex.org/W2789821723, https://openalex.org/W2907223767, https://openalex.org/W4391787586, https://openalex.org/W2923297733, https://openalex.org/W4309287427 |
| referenced_works_count | 124 |
| abstract_inverted_index.% | 164, 173 |
| abstract_inverted_index.5 | 97 |
| abstract_inverted_index.A | 134 |
| abstract_inverted_index.a | 92, 119, 167 |
| abstract_inverted_index.%) | 103 |
| abstract_inverted_index.%, | 96, 98, 100 |
| abstract_inverted_index.(0 | 95 |
| abstract_inverted_index.10 | 99, 163 |
| abstract_inverted_index.15 | 102 |
| abstract_inverted_index.ML | 200 |
| abstract_inverted_index.as | 25, 91 |
| abstract_inverted_index.be | 209 |
| abstract_inverted_index.in | 44, 253 |
| abstract_inverted_index.is | 64 |
| abstract_inverted_index.it | 85, 117 |
| abstract_inverted_index.of | 3, 56, 111, 130, 177, 217, 251 |
| abstract_inverted_index.on | 113, 123 |
| abstract_inverted_index.to | 12, 104, 144, 195, 208 |
| abstract_inverted_index.270 | 138 |
| abstract_inverted_index.RCP | 131, 160, 193 |
| abstract_inverted_index.The | 0, 153 |
| abstract_inverted_index.and | 32, 37, 101, 107, 146, 197, 228, 240, 246 |
| abstract_inverted_index.are | 40 |
| abstract_inverted_index.due | 194 |
| abstract_inverted_index.fly | 26 |
| abstract_inverted_index.for | 66, 126, 223, 237 |
| abstract_inverted_index.has | 7 |
| abstract_inverted_index.key | 76 |
| abstract_inverted_index.mix | 61, 161 |
| abstract_inverted_index.mud | 31 |
| abstract_inverted_index.red | 30 |
| abstract_inverted_index.the | 4, 45, 49, 54, 60, 68, 80, 108, 114, 127, 158, 178, 210, 214, 220, 248 |
| abstract_inverted_index.two | 41, 75 |
| abstract_inverted_index.use | 250 |
| abstract_inverted_index.was | 142, 171, 206 |
| abstract_inverted_index.(ML) | 151 |
| abstract_inverted_index.15.8 | 172 |
| abstract_inverted_index.RCP. | 182 |
| abstract_inverted_index.This | 72 |
| abstract_inverted_index.ash, | 27 |
| abstract_inverted_index.data | 140 |
| abstract_inverted_index.mean | 225, 229 |
| abstract_inverted_index.most | 211 |
| abstract_inverted_index.root | 224 |
| abstract_inverted_index.such | 24, 57 |
| abstract_inverted_index.test | 147 |
| abstract_inverted_index.than | 175 |
| abstract_inverted_index.that | 157, 170, 176, 188, 203 |
| abstract_inverted_index.uses | 86 |
| abstract_inverted_index.with | 79, 162, 192, 219 |
| abstract_inverted_index.(RCP) | 90 |
| abstract_inverted_index.These | 232 |
| abstract_inverted_index.based | 122, 132 |
| abstract_inverted_index.drawn | 9 |
| abstract_inverted_index.error | 227 |
| abstract_inverted_index.found | 207 |
| abstract_inverted_index.glass | 29 |
| abstract_inverted_index.major | 42 |
| abstract_inverted_index.model | 121 |
| abstract_inverted_index.solid | 33 |
| abstract_inverted_index.study | 73 |
| abstract_inverted_index.train | 145 |
| abstract_inverted_index.waste | 28 |
| abstract_inverted_index.which | 14, 63 |
| abstract_inverted_index.First, | 84 |
| abstract_inverted_index.cement | 93, 112 |
| abstract_inverted_index.design | 244 |
| abstract_inverted_index.effect | 2 |
| abstract_inverted_index.error. | 231 |
| abstract_inverted_index.higher | 174 |
| abstract_inverted_index.impact | 110 |
| abstract_inverted_index.issues | 77 |
| abstract_inverted_index.lowest | 221 |
| abstract_inverted_index.models | 201 |
| abstract_inverted_index.points | 141 |
| abstract_inverted_index.powder | 89 |
| abstract_inverted_index.sector | 6 |
| abstract_inverted_index.values | 222 |
| abstract_inverted_index.waste. | 34 |
| abstract_inverted_index.between | 53 |
| abstract_inverted_index.complex | 50 |
| abstract_inverted_index.crucial | 65 |
| abstract_inverted_index.current | 81 |
| abstract_inverted_index.dataset | 136 |
| abstract_inverted_index.design, | 62 |
| abstract_inverted_index.filling | 196 |
| abstract_inverted_index.highest | 215 |
| abstract_inverted_index.leading | 11 |
| abstract_inverted_index.machine | 124, 149 |
| abstract_inverted_index.models. | 152 |
| abstract_inverted_index.optimum | 159 |
| abstract_inverted_index.promote | 105 |
| abstract_inverted_index.provide | 234 |
| abstract_inverted_index.results | 155 |
| abstract_inverted_index.squared | 226 |
| abstract_inverted_index.various | 148 |
| abstract_inverted_index.without | 181 |
| abstract_inverted_index.Boosting | 205 |
| abstract_inverted_index.Gradient | 204 |
| abstract_inverted_index.absolute | 230 |
| abstract_inverted_index.achieved | 166 |
| abstract_inverted_index.compiled | 143 |
| abstract_inverted_index.concerns | 43 |
| abstract_inverted_index.concrete | 58, 82, 88, 180, 254 |
| abstract_inverted_index.enhanced | 243 |
| abstract_inverted_index.findings | 233 |
| abstract_inverted_index.improved | 191 |
| abstract_inverted_index.indicate | 202 |
| abstract_inverted_index.insights | 236 |
| abstract_inverted_index.internal | 51, 189 |
| abstract_inverted_index.learning | 125, 150 |
| abstract_inverted_index.precise, | 212 |
| abstract_inverted_index.promotes | 15 |
| abstract_inverted_index.proposes | 118 |
| abstract_inverted_index.recently | 8 |
| abstract_inverted_index.recycled | 87 |
| abstract_inverted_index.required | 69 |
| abstract_inverted_index.research | 13 |
| abstract_inverted_index.scanning | 184 |
| abstract_inverted_index.strength | 129, 169 |
| abstract_inverted_index.valuable | 235 |
| abstract_inverted_index.Secondly, | 116 |
| abstract_inverted_index.addresses | 74 |
| abstract_inverted_index.attaining | 67 |
| abstract_inverted_index.concrete. | 133 |
| abstract_inverted_index.determine | 59 |
| abstract_inverted_index.different | 18, 21 |
| abstract_inverted_index.efficient | 249 |
| abstract_inverted_index.indicated | 156 |
| abstract_inverted_index.indicates | 187 |
| abstract_inverted_index.industry. | 47 |
| abstract_inverted_index.materials | 23 |
| abstract_inverted_index.projects. | 256 |
| abstract_inverted_index.promoting | 247 |
| abstract_inverted_index.reaction. | 199 |
| abstract_inverted_index.reference | 179 |
| abstract_inverted_index.resources | 252 |
| abstract_inverted_index.strength. | 71 |
| abstract_inverted_index.structure | 190 |
| abstract_inverted_index.Therefore, | 17 |
| abstract_inverted_index.associated | 78 |
| abstract_inverted_index.attention, | 10 |
| abstract_inverted_index.components | 55 |
| abstract_inverted_index.containing | 137 |
| abstract_inverted_index.electronic | 185 |
| abstract_inverted_index.engineers, | 238 |
| abstract_inverted_index.exhibiting | 213 |
| abstract_inverted_index.mechanical | 38 |
| abstract_inverted_index.microscopy | 186 |
| abstract_inverted_index.pozzolanic | 198 |
| abstract_inverted_index.predictive | 120 |
| abstract_inverted_index.recommends | 20 |
| abstract_inverted_index.researcher | 19 |
| abstract_inverted_index.alternative | 22 |
| abstract_inverted_index.coefficient | 216 |
| abstract_inverted_index.compressive | 70, 128, 168 |
| abstract_inverted_index.performance | 39 |
| abstract_inverted_index.production. | 83 |
| abstract_inverted_index.replacement | 94 |
| abstract_inverted_index.undesirable | 109 |
| abstract_inverted_index.Furthermore, | 48, 183 |
| abstract_inverted_index.construction | 5, 46, 255 |
| abstract_inverted_index.contractors, | 239 |
| abstract_inverted_index.environment. | 115 |
| abstract_inverted_index.experimental | 139, 154 |
| abstract_inverted_index.facilitating | 242 |
| abstract_inverted_index.optimization | 245 |
| abstract_inverted_index.replacement, | 165 |
| abstract_inverted_index.Environmental | 35 |
| abstract_inverted_index.comprehensive | 135 |
| abstract_inverted_index.determination | 218 |
| abstract_inverted_index.environmental | 1 |
| abstract_inverted_index.relationships | 52 |
| abstract_inverted_index.stakeholders, | 241 |
| abstract_inverted_index.sustainability | 36, 106 |
| abstract_inverted_index.sustainability. | 16 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.98940021 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |