Machine learning predictions of high-Curie-temperature materials Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1063/5.0156377
Technologies that function at room temperature often require magnets with a high Curie temperature, TC, and can be improved with better materials. Discovering magnetic materials with a substantial TC is challenging because of the large number of candidates and the cost of fabricating and testing them. Using the two largest known datasets of experimental Curie temperatures, we develop machine-learning models to make rapid TC predictions solely based on the chemical composition of a material. We train a random-forest model and a k-NN one and predict on an initial dataset of over 2500 materials and then validate the model on a new dataset containing over 3000 entries. The accuracy is compared for multiple compounds' representations (“descriptors”) and regression approaches. A random-forest model provides the most accurate predictions and is not improved by dimensionality reduction or by using more complex descriptors based on atomic properties. A random-forest model trained on a combination of both datasets shows that cobalt-rich and iron-rich materials have the highest Curie temperatures for all binary and ternary compounds. An analysis of the model reveals systematic error that causes the model to over-predict low-TC materials and under-predict high-TC materials. For exhaustive searches to find new high-TC materials, analysis of the learning rate suggests either that much more data is needed or that more efficient descriptors are necessary.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1063/5.0156377
- OA Status
- green
- Cited By
- 16
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385246456
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385246456Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1063/5.0156377Digital Object Identifier
- Title
-
Machine learning predictions of high-Curie-temperature materialsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-24Full publication date if available
- Authors
-
Joshua F. Belot, Valentin Taufour, Stefano Sanvito, Gus L. W. HartList of authors in order
- Landing page
-
https://doi.org/10.1063/5.0156377Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/2423808Direct OA link when available
- Concepts
-
Curie temperature, Random forest, Ternary operation, Curse of dimensionality, Machine learning, Marie curie, Dimensionality reduction, Curie, Materials science, Regression, Artificial intelligence, Computer science, Thermodynamics, Condensed matter physics, Mathematics, Physics, Statistics, Ferromagnetism, Economic policy, Business, European union, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 6Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385246456 |
|---|---|
| doi | https://doi.org/10.1063/5.0156377 |
| ids.doi | https://doi.org/10.1063/5.0156377 |
| ids.openalex | https://openalex.org/W4385246456 |
| fwci | 2.14424152 |
| type | article |
| title | Machine learning predictions of high-Curie-temperature materials |
| awards[0].id | https://openalex.org/G4386404955 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | DMR-1817321 |
| awards[0].funder_display_name | National Science Foundation |
| biblio.issue | 4 |
| biblio.volume | 123 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T12613 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9958000183105469 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | X-ray Diffraction in Crystallography |
| topics[2].id | https://openalex.org/T12588 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.991599977016449 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Electronic and Structural Properties of Oxides |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320321056 |
| funders[1].ror | https://ror.org/051xex213 |
| funders[1].display_name | Irish Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C63648874 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8379315137863159 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q191073 |
| concepts[0].display_name | Curie temperature |
| concepts[1].id | https://openalex.org/C169258074 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7240299582481384 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[1].display_name | Random forest |
| concepts[2].id | https://openalex.org/C64452783 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7049180865287781 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1524945 |
| concepts[2].display_name | Ternary operation |
| concepts[3].id | https://openalex.org/C111030470 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5303279757499695 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[3].display_name | Curse of dimensionality |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5232573747634888 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C2993243194 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4884306490421295 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7186 |
| concepts[5].display_name | Marie curie |
| concepts[6].id | https://openalex.org/C70518039 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4883553683757782 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[6].display_name | Dimensionality reduction |
| concepts[7].id | https://openalex.org/C26325048 |
| concepts[7].level | 4 |
| concepts[7].score | 0.46711549162864685 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q218206 |
| concepts[7].display_name | Curie |
| concepts[8].id | https://openalex.org/C192562407 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4403538703918457 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[8].display_name | Materials science |
| concepts[9].id | https://openalex.org/C83546350 |
| concepts[9].level | 2 |
| concepts[9].score | 0.424931138753891 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[9].display_name | Regression |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4228178858757019 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.41445672512054443 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C97355855 |
| concepts[12].level | 1 |
| concepts[12].score | 0.32823771238327026 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[12].display_name | Thermodynamics |
| concepts[13].id | https://openalex.org/C26873012 |
| concepts[13].level | 1 |
| concepts[13].score | 0.30360478162765503 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[13].display_name | Condensed matter physics |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.22708511352539062 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.18575453758239746 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1833227574825287 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C82217956 |
| concepts[17].level | 2 |
| concepts[17].score | 0.10809126496315002 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q184207 |
| concepts[17].display_name | Ferromagnetism |
| concepts[18].id | https://openalex.org/C105639569 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q582577 |
| concepts[18].display_name | Economic policy |
| concepts[19].id | https://openalex.org/C144133560 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[19].display_name | Business |
| concepts[20].id | https://openalex.org/C2910001868 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q458 |
| concepts[20].display_name | European union |
| concepts[21].id | https://openalex.org/C199360897 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[21].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/curie-temperature |
| keywords[0].score | 0.8379315137863159 |
| keywords[0].display_name | Curie temperature |
| keywords[1].id | https://openalex.org/keywords/random-forest |
| keywords[1].score | 0.7240299582481384 |
| keywords[1].display_name | Random forest |
| keywords[2].id | https://openalex.org/keywords/ternary-operation |
| keywords[2].score | 0.7049180865287781 |
| keywords[2].display_name | Ternary operation |
| keywords[3].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[3].score | 0.5303279757499695 |
| keywords[3].display_name | Curse of dimensionality |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5232573747634888 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/marie-curie |
| keywords[5].score | 0.4884306490421295 |
| keywords[5].display_name | Marie curie |
| keywords[6].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[6].score | 0.4883553683757782 |
| keywords[6].display_name | Dimensionality reduction |
| keywords[7].id | https://openalex.org/keywords/curie |
| keywords[7].score | 0.46711549162864685 |
| keywords[7].display_name | Curie |
| keywords[8].id | https://openalex.org/keywords/materials-science |
| keywords[8].score | 0.4403538703918457 |
| keywords[8].display_name | Materials science |
| keywords[9].id | https://openalex.org/keywords/regression |
| keywords[9].score | 0.424931138753891 |
| keywords[9].display_name | Regression |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.4228178858757019 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.41445672512054443 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/thermodynamics |
| keywords[12].score | 0.32823771238327026 |
| keywords[12].display_name | Thermodynamics |
| keywords[13].id | https://openalex.org/keywords/condensed-matter-physics |
| keywords[13].score | 0.30360478162765503 |
| keywords[13].display_name | Condensed matter physics |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.22708511352539062 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.18575453758239746 |
| keywords[15].display_name | Physics |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.1833227574825287 |
| keywords[16].display_name | Statistics |
| keywords[17].id | https://openalex.org/keywords/ferromagnetism |
| keywords[17].score | 0.10809126496315002 |
| keywords[17].display_name | Ferromagnetism |
| language | en |
| locations[0].id | doi:10.1063/5.0156377 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S105243760 |
| locations[0].source.issn | 0003-6951, 1077-3118, 1520-8842 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0003-6951 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Applied Physics Letters |
| locations[0].source.host_organization | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_name | American Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_lineage_names | American Institute of Physics |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Physics Letters |
| locations[0].landing_page_url | https://doi.org/10.1063/5.0156377 |
| locations[1].id | pmh:oai:osti.gov:2423808 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/2423808 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5103245106 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-9282-0125 |
| authorships[0].author.display_name | Joshua F. Belot |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I100005738 |
| authorships[0].affiliations[0].raw_affiliation_string | Brigham Young University 1 , Provo, Utah 84602, USA |
| authorships[0].institutions[0].id | https://openalex.org/I100005738 |
| authorships[0].institutions[0].ror | https://ror.org/047rhhm47 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I100005738 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Brigham Young University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joshua F. Belot |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Brigham Young University 1 , Provo, Utah 84602, USA |
| authorships[1].author.id | https://openalex.org/A5083481154 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0024-9960 |
| authorships[1].author.display_name | Valentin Taufour |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I84218800 |
| authorships[1].affiliations[0].raw_affiliation_string | University of California, Davis 2 , One Shields Avenue, Davis, California 95616, USA |
| authorships[1].institutions[0].id | https://openalex.org/I84218800 |
| authorships[1].institutions[0].ror | https://ror.org/05rrcem69 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I84218800 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, Davis |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Valentin Taufour |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of California, Davis 2 , One Shields Avenue, Davis, California 95616, USA |
| authorships[2].author.id | https://openalex.org/A5049903688 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0291-715X |
| authorships[2].author.display_name | Stefano Sanvito |
| authorships[2].countries | IE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I205274468, https://openalex.org/I4210112033 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Physics, AMBER and CRANN Institute, Trinity College 3 , Dublin 2, Ireland |
| authorships[2].institutions[0].id | https://openalex.org/I4210112033 |
| authorships[2].institutions[0].ror | https://ror.org/01c4rxk68 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I142762351, https://openalex.org/I188760350, https://openalex.org/I205274468, https://openalex.org/I230495080, https://openalex.org/I27577105, https://openalex.org/I4210112033, https://openalex.org/I42934936 |
| authorships[2].institutions[0].country_code | IE |
| authorships[2].institutions[0].display_name | Advanced Materials and BioEngineering Research |
| authorships[2].institutions[1].id | https://openalex.org/I205274468 |
| authorships[2].institutions[1].ror | https://ror.org/02tyrky19 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I205274468 |
| authorships[2].institutions[1].country_code | IE |
| authorships[2].institutions[1].display_name | Trinity College Dublin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Stefano Sanvito |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Physics, AMBER and CRANN Institute, Trinity College 3 , Dublin 2, Ireland |
| authorships[3].author.id | https://openalex.org/A5035097475 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6149-9234 |
| authorships[3].author.display_name | Gus L. W. Hart |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I100005738 |
| authorships[3].affiliations[0].raw_affiliation_string | Brigham Young University 1 , Provo, Utah 84602, USA |
| authorships[3].institutions[0].id | https://openalex.org/I100005738 |
| authorships[3].institutions[0].ror | https://ror.org/047rhhm47 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I100005738 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Brigham Young University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Gus L. W. Hart |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Brigham Young University 1 , Provo, Utah 84602, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/2423808 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine learning predictions of high-Curie-temperature materials |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W2534478056, https://openalex.org/W2562986996, https://openalex.org/W2138022645, https://openalex.org/W108590863, https://openalex.org/W1489653783, https://openalex.org/W2018467316, https://openalex.org/W2958490167, https://openalex.org/W3038649659, https://openalex.org/W2010874258, https://openalex.org/W4241433233 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:osti.gov:2423808 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/2423808 |
| primary_location.id | doi:10.1063/5.0156377 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S105243760 |
| primary_location.source.issn | 0003-6951, 1077-3118, 1520-8842 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0003-6951 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Applied Physics Letters |
| primary_location.source.host_organization | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_name | American Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_lineage_names | American Institute of Physics |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Physics Letters |
| primary_location.landing_page_url | https://doi.org/10.1063/5.0156377 |
| publication_date | 2023-07-24 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2949096148, https://openalex.org/W2951990673, https://openalex.org/W2123306226, https://openalex.org/W4297537371, https://openalex.org/W3036267155, https://openalex.org/W4283024074, https://openalex.org/W3016252479, https://openalex.org/W2000331965, https://openalex.org/W2606478829, https://openalex.org/W1999784170, https://openalex.org/W2083335500, https://openalex.org/W1982124362, https://openalex.org/W2040798679, https://openalex.org/W2093531344, https://openalex.org/W2026190990, https://openalex.org/W1968799507, https://openalex.org/W2093199778, https://openalex.org/W2079584029, https://openalex.org/W3034110638, https://openalex.org/W2062232545, https://openalex.org/W2018114878, https://openalex.org/W2005842874, https://openalex.org/W1974466999, https://openalex.org/W2911729482, https://openalex.org/W2023611524, https://openalex.org/W3100740554, https://openalex.org/W2986015109, https://openalex.org/W2804333359, https://openalex.org/W2966354860, https://openalex.org/W2890177760, https://openalex.org/W3002569052, https://openalex.org/W4200559673, https://openalex.org/W2101234009, https://openalex.org/W2940163937, https://openalex.org/W2335591923, https://openalex.org/W4313484155, https://openalex.org/W2979402468, https://openalex.org/W3082902407, https://openalex.org/W3119520457, https://openalex.org/W3099714901, https://openalex.org/W3112863602 |
| referenced_works_count | 41 |
| abstract_inverted_index.A | 118, 143 |
| abstract_inverted_index.a | 10, 26, 72, 76, 80, 99, 148 |
| abstract_inverted_index.An | 170 |
| abstract_inverted_index.TC | 28, 63 |
| abstract_inverted_index.We | 74 |
| abstract_inverted_index.an | 86 |
| abstract_inverted_index.at | 3 |
| abstract_inverted_index.be | 17 |
| abstract_inverted_index.by | 130, 134 |
| abstract_inverted_index.is | 29, 108, 127, 209 |
| abstract_inverted_index.of | 32, 36, 41, 52, 71, 89, 150, 172, 199 |
| abstract_inverted_index.on | 67, 85, 98, 140, 147 |
| abstract_inverted_index.or | 133, 211 |
| abstract_inverted_index.to | 60, 182, 193 |
| abstract_inverted_index.we | 56 |
| abstract_inverted_index.For | 190 |
| abstract_inverted_index.TC, | 14 |
| abstract_inverted_index.The | 106 |
| abstract_inverted_index.all | 165 |
| abstract_inverted_index.and | 15, 38, 43, 79, 83, 93, 115, 126, 156, 167, 186 |
| abstract_inverted_index.are | 216 |
| abstract_inverted_index.can | 16 |
| abstract_inverted_index.for | 110, 164 |
| abstract_inverted_index.new | 100, 195 |
| abstract_inverted_index.not | 128 |
| abstract_inverted_index.one | 82 |
| abstract_inverted_index.the | 33, 39, 47, 68, 96, 122, 160, 173, 180, 200 |
| abstract_inverted_index.two | 48 |
| abstract_inverted_index.2500 | 91 |
| abstract_inverted_index.3000 | 104 |
| abstract_inverted_index.both | 151 |
| abstract_inverted_index.cost | 40 |
| abstract_inverted_index.data | 208 |
| abstract_inverted_index.find | 194 |
| abstract_inverted_index.have | 159 |
| abstract_inverted_index.high | 11 |
| abstract_inverted_index.k-NN | 81 |
| abstract_inverted_index.make | 61 |
| abstract_inverted_index.more | 136, 207, 213 |
| abstract_inverted_index.most | 123 |
| abstract_inverted_index.much | 206 |
| abstract_inverted_index.over | 90, 103 |
| abstract_inverted_index.rate | 202 |
| abstract_inverted_index.room | 4 |
| abstract_inverted_index.that | 1, 154, 178, 205, 212 |
| abstract_inverted_index.then | 94 |
| abstract_inverted_index.with | 9, 19, 25 |
| abstract_inverted_index.Curie | 12, 54, 162 |
| abstract_inverted_index.Using | 46 |
| abstract_inverted_index.based | 66, 139 |
| abstract_inverted_index.error | 177 |
| abstract_inverted_index.known | 50 |
| abstract_inverted_index.large | 34 |
| abstract_inverted_index.model | 78, 97, 120, 145, 174, 181 |
| abstract_inverted_index.often | 6 |
| abstract_inverted_index.rapid | 62 |
| abstract_inverted_index.shows | 153 |
| abstract_inverted_index.them. | 45 |
| abstract_inverted_index.train | 75 |
| abstract_inverted_index.using | 135 |
| abstract_inverted_index.atomic | 141 |
| abstract_inverted_index.better | 20 |
| abstract_inverted_index.binary | 166 |
| abstract_inverted_index.causes | 179 |
| abstract_inverted_index.either | 204 |
| abstract_inverted_index.low-TC | 184 |
| abstract_inverted_index.models | 59 |
| abstract_inverted_index.needed | 210 |
| abstract_inverted_index.number | 35 |
| abstract_inverted_index.solely | 65 |
| abstract_inverted_index.because | 31 |
| abstract_inverted_index.complex | 137 |
| abstract_inverted_index.dataset | 88, 101 |
| abstract_inverted_index.develop | 57 |
| abstract_inverted_index.high-TC | 188, 196 |
| abstract_inverted_index.highest | 161 |
| abstract_inverted_index.initial | 87 |
| abstract_inverted_index.largest | 49 |
| abstract_inverted_index.magnets | 8 |
| abstract_inverted_index.predict | 84 |
| abstract_inverted_index.require | 7 |
| abstract_inverted_index.reveals | 175 |
| abstract_inverted_index.ternary | 168 |
| abstract_inverted_index.testing | 44 |
| abstract_inverted_index.trained | 146 |
| abstract_inverted_index.accuracy | 107 |
| abstract_inverted_index.accurate | 124 |
| abstract_inverted_index.analysis | 171, 198 |
| abstract_inverted_index.chemical | 69 |
| abstract_inverted_index.compared | 109 |
| abstract_inverted_index.datasets | 51, 152 |
| abstract_inverted_index.entries. | 105 |
| abstract_inverted_index.function | 2 |
| abstract_inverted_index.improved | 18, 129 |
| abstract_inverted_index.learning | 201 |
| abstract_inverted_index.magnetic | 23 |
| abstract_inverted_index.multiple | 111 |
| abstract_inverted_index.provides | 121 |
| abstract_inverted_index.searches | 192 |
| abstract_inverted_index.suggests | 203 |
| abstract_inverted_index.validate | 95 |
| abstract_inverted_index.efficient | 214 |
| abstract_inverted_index.iron-rich | 157 |
| abstract_inverted_index.material. | 73 |
| abstract_inverted_index.materials | 24, 92, 158, 185 |
| abstract_inverted_index.reduction | 132 |
| abstract_inverted_index.candidates | 37 |
| abstract_inverted_index.compounds' | 112 |
| abstract_inverted_index.compounds. | 169 |
| abstract_inverted_index.containing | 102 |
| abstract_inverted_index.exhaustive | 191 |
| abstract_inverted_index.materials, | 197 |
| abstract_inverted_index.materials. | 21, 189 |
| abstract_inverted_index.necessary. | 217 |
| abstract_inverted_index.regression | 116 |
| abstract_inverted_index.systematic | 176 |
| abstract_inverted_index.Discovering | 22 |
| abstract_inverted_index.approaches. | 117 |
| abstract_inverted_index.challenging | 30 |
| abstract_inverted_index.cobalt-rich | 155 |
| abstract_inverted_index.combination | 149 |
| abstract_inverted_index.composition | 70 |
| abstract_inverted_index.descriptors | 138, 215 |
| abstract_inverted_index.fabricating | 42 |
| abstract_inverted_index.predictions | 64, 125 |
| abstract_inverted_index.properties. | 142 |
| abstract_inverted_index.substantial | 27 |
| abstract_inverted_index.temperature | 5 |
| abstract_inverted_index.Technologies | 0 |
| abstract_inverted_index.experimental | 53 |
| abstract_inverted_index.over-predict | 183 |
| abstract_inverted_index.temperature, | 13 |
| abstract_inverted_index.temperatures | 163 |
| abstract_inverted_index.random-forest | 77, 119, 144 |
| abstract_inverted_index.temperatures, | 55 |
| abstract_inverted_index.under-predict | 187 |
| abstract_inverted_index.dimensionality | 131 |
| abstract_inverted_index.representations | 113 |
| abstract_inverted_index.machine-learning | 58 |
| abstract_inverted_index.(“descriptors”) | 114 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.84857578 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |