Machine Learning Regressors Calibrated on Computed Data for Road Traffic Noise Prediction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/make7040133
Noise is one of the main pollutants in urban contexts, even if it is not perceived as severe as other pollutants. Transportation, specifically road traffic, accounts for most of the urban environmental noise, and its monitoring is very important and sometimes compelled by law. To do this, two different approaches are possible: a direct measurement campaign or a simulation approach. The so-called Road Traffic Noise Models (RTNMs) are used for this second scope. In recent years, noise assessment has also been experimented with through Machine Learning (ML) techniques: ML is very interesting mainly because it is usable in unusual road traffic conditions, like in the presence of roundabouts and/or stops and traffic lights, or more generally when the free flow aspect is not verified, and the classic RTNMs fail. In this contribution, a large and comprehensive study on four different ML regressors is presented. After careful hyperparameter tuning, regressors have been calibrated by using two different approaches: a classic train/test split on real road traffic data, and by using a computed dataset. Results show a quantitative and qualitative description of the outputs of the ML regressors functioning, and how their calibration by using computed data instead of real data can give good output simulations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/make7040133
- https://www.mdpi.com/2504-4990/7/4/133/pdf?version=1761987315
- OA Status
- gold
- References
- 46
- OpenAlex ID
- https://openalex.org/W4415812949
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415812949Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/make7040133Digital Object Identifier
- Title
-
Machine Learning Regressors Calibrated on Computed Data for Road Traffic Noise PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-01Full publication date if available
- Authors
-
Domenico Rossi, Aurora Mascolo, Daljeet Singh, Cláudio GuarnacciaList of authors in order
- Landing page
-
https://doi.org/10.3390/make7040133Publisher landing page
- PDF URL
-
https://www.mdpi.com/2504-4990/7/4/133/pdf?version=1761987315Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2504-4990/7/4/133/pdf?version=1761987315Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
46Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415812949 |
|---|---|
| doi | https://doi.org/10.3390/make7040133 |
| ids.doi | https://doi.org/10.3390/make7040133 |
| ids.openalex | https://openalex.org/W4415812949 |
| fwci | |
| type | article |
| title | Machine Learning Regressors Calibrated on Computed Data for Road Traffic Noise Prediction |
| biblio.issue | 4 |
| biblio.volume | 7 |
| biblio.last_page | 133 |
| biblio.first_page | 133 |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1515 |
| apc_paid.value | 1400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1515 |
| language | en |
| locations[0].id | doi:10.3390/make7040133 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210213891 |
| locations[0].source.issn | 2504-4990 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2504-4990 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Machine Learning and Knowledge Extraction |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2504-4990/7/4/133/pdf?version=1761987315 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Machine Learning and Knowledge Extraction |
| locations[0].landing_page_url | https://doi.org/10.3390/make7040133 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5072951301 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2554-5088 |
| authorships[0].author.display_name | Domenico Rossi |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I131729948 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I131729948 |
| authorships[0].institutions[0].ror | https://ror.org/0192m2k53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I131729948 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | University of Salerno |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Domenico Rossi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy |
| authorships[1].author.id | https://openalex.org/A5060328586 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9488-6006 |
| authorships[1].author.display_name | Aurora Mascolo |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I131729948 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy |
| authorships[1].institutions[0].id | https://openalex.org/I131729948 |
| authorships[1].institutions[0].ror | https://ror.org/0192m2k53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I131729948 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | University of Salerno |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Aurora Mascolo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy |
| authorships[2].author.id | https://openalex.org/A5017728649 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0587-1476 |
| authorships[2].author.display_name | Daljeet Singh |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I162030827 |
| authorships[2].affiliations[0].raw_affiliation_string | Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala 147004, India |
| authorships[2].institutions[0].id | https://openalex.org/I162030827 |
| authorships[2].institutions[0].ror | https://ror.org/00wdq3744 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I162030827 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Thapar Institute of Engineering & Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Daljeet Singh |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala 147004, India |
| authorships[3].author.id | https://openalex.org/A5008122101 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4014-0679 |
| authorships[3].author.display_name | Cláudio Guarnaccia |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I131729948 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy |
| authorships[3].institutions[0].id | https://openalex.org/I131729948 |
| authorships[3].institutions[0].ror | https://ror.org/0192m2k53 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I131729948 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | University of Salerno |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Claudio Guarnaccia |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2504-4990/7/4/133/pdf?version=1761987315 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-03T00:00:00 |
| display_name | Machine Learning Regressors Calibrated on Computed Data for Road Traffic Noise Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/make7040133 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210213891 |
| best_oa_location.source.issn | 2504-4990 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2504-4990 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Machine Learning and Knowledge Extraction |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2504-4990/7/4/133/pdf?version=1761987315 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Machine Learning and Knowledge Extraction |
| best_oa_location.landing_page_url | https://doi.org/10.3390/make7040133 |
| primary_location.id | doi:10.3390/make7040133 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210213891 |
| primary_location.source.issn | 2504-4990 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2504-4990 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Machine Learning and Knowledge Extraction |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2504-4990/7/4/133/pdf?version=1761987315 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Machine Learning and Knowledge Extraction |
| primary_location.landing_page_url | https://doi.org/10.3390/make7040133 |
| publication_date | 2025-11-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4322501469, https://openalex.org/W4362723278, https://openalex.org/W2768200287, https://openalex.org/W4399852540, https://openalex.org/W4214709758, https://openalex.org/W3042478219, https://openalex.org/W4391326754, https://openalex.org/W4315607243, https://openalex.org/W4401921095, https://openalex.org/W1971728435, https://openalex.org/W2000332654, https://openalex.org/W2028546147, https://openalex.org/W2068468362, https://openalex.org/W2091892525, https://openalex.org/W4401124624, https://openalex.org/W4408697180, https://openalex.org/W4382066226, https://openalex.org/W4410853664, https://openalex.org/W4414872976, https://openalex.org/W4389742403, https://openalex.org/W3153802714, https://openalex.org/W4407319395, https://openalex.org/W2035388934, https://openalex.org/W3206930735, https://openalex.org/W3162839637, https://openalex.org/W2963123137, https://openalex.org/W2931190164, https://openalex.org/W4304942977, https://openalex.org/W4313148042, https://openalex.org/W4210552848, https://openalex.org/W3174063281, https://openalex.org/W3138790025, https://openalex.org/W4364355744, https://openalex.org/W2334791991, https://openalex.org/W4400823820, https://openalex.org/W3118299338, https://openalex.org/W4213113494, https://openalex.org/W4206160026, https://openalex.org/W4377107242, https://openalex.org/W4393866665, https://openalex.org/W1989465643, https://openalex.org/W4388526436, https://openalex.org/W4399432550, https://openalex.org/W4205485283, https://openalex.org/W4400135851, https://openalex.org/W3016099278 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 52, 57, 132, 157, 169, 174 |
| abstract_inverted_index.In | 73, 129 |
| abstract_inverted_index.ML | 88, 140, 184 |
| abstract_inverted_index.To | 44 |
| abstract_inverted_index.as | 16, 18 |
| abstract_inverted_index.by | 42, 152, 167, 191 |
| abstract_inverted_index.do | 45 |
| abstract_inverted_index.if | 11 |
| abstract_inverted_index.in | 7, 97, 103 |
| abstract_inverted_index.is | 1, 13, 36, 89, 95, 121, 142 |
| abstract_inverted_index.it | 12, 94 |
| abstract_inverted_index.of | 3, 28, 106, 179, 182, 196 |
| abstract_inverted_index.on | 137, 161 |
| abstract_inverted_index.or | 56, 113 |
| abstract_inverted_index.The | 60 |
| abstract_inverted_index.and | 33, 39, 110, 124, 134, 166, 176, 187 |
| abstract_inverted_index.are | 50, 67 |
| abstract_inverted_index.can | 199 |
| abstract_inverted_index.for | 26, 69 |
| abstract_inverted_index.has | 78 |
| abstract_inverted_index.how | 188 |
| abstract_inverted_index.its | 34 |
| abstract_inverted_index.not | 14, 122 |
| abstract_inverted_index.one | 2 |
| abstract_inverted_index.the | 4, 29, 104, 117, 125, 180, 183 |
| abstract_inverted_index.two | 47, 154 |
| abstract_inverted_index.(ML) | 86 |
| abstract_inverted_index.Road | 62 |
| abstract_inverted_index.also | 79 |
| abstract_inverted_index.been | 80, 150 |
| abstract_inverted_index.data | 194, 198 |
| abstract_inverted_index.even | 10 |
| abstract_inverted_index.flow | 119 |
| abstract_inverted_index.four | 138 |
| abstract_inverted_index.free | 118 |
| abstract_inverted_index.give | 200 |
| abstract_inverted_index.good | 201 |
| abstract_inverted_index.have | 149 |
| abstract_inverted_index.law. | 43 |
| abstract_inverted_index.like | 102 |
| abstract_inverted_index.main | 5 |
| abstract_inverted_index.more | 114 |
| abstract_inverted_index.most | 27 |
| abstract_inverted_index.real | 162, 197 |
| abstract_inverted_index.road | 23, 99, 163 |
| abstract_inverted_index.show | 173 |
| abstract_inverted_index.this | 70, 130 |
| abstract_inverted_index.used | 68 |
| abstract_inverted_index.very | 37, 90 |
| abstract_inverted_index.when | 116 |
| abstract_inverted_index.with | 82 |
| abstract_inverted_index.After | 144 |
| abstract_inverted_index.Noise | 0, 64 |
| abstract_inverted_index.RTNMs | 127 |
| abstract_inverted_index.data, | 165 |
| abstract_inverted_index.fail. | 128 |
| abstract_inverted_index.large | 133 |
| abstract_inverted_index.noise | 76 |
| abstract_inverted_index.other | 19 |
| abstract_inverted_index.split | 160 |
| abstract_inverted_index.stops | 109 |
| abstract_inverted_index.study | 136 |
| abstract_inverted_index.their | 189 |
| abstract_inverted_index.this, | 46 |
| abstract_inverted_index.urban | 8, 30 |
| abstract_inverted_index.using | 153, 168, 192 |
| abstract_inverted_index.Models | 65 |
| abstract_inverted_index.and/or | 108 |
| abstract_inverted_index.aspect | 120 |
| abstract_inverted_index.direct | 53 |
| abstract_inverted_index.mainly | 92 |
| abstract_inverted_index.noise, | 32 |
| abstract_inverted_index.output | 202 |
| abstract_inverted_index.recent | 74 |
| abstract_inverted_index.scope. | 72 |
| abstract_inverted_index.second | 71 |
| abstract_inverted_index.severe | 17 |
| abstract_inverted_index.usable | 96 |
| abstract_inverted_index.years, | 75 |
| abstract_inverted_index.(RTNMs) | 66 |
| abstract_inverted_index.Machine | 84 |
| abstract_inverted_index.Results | 172 |
| abstract_inverted_index.Traffic | 63 |
| abstract_inverted_index.because | 93 |
| abstract_inverted_index.careful | 145 |
| abstract_inverted_index.classic | 126, 158 |
| abstract_inverted_index.instead | 195 |
| abstract_inverted_index.lights, | 112 |
| abstract_inverted_index.outputs | 181 |
| abstract_inverted_index.through | 83 |
| abstract_inverted_index.traffic | 100, 111, 164 |
| abstract_inverted_index.tuning, | 147 |
| abstract_inverted_index.unusual | 98 |
| abstract_inverted_index.Learning | 85 |
| abstract_inverted_index.accounts | 25 |
| abstract_inverted_index.campaign | 55 |
| abstract_inverted_index.computed | 170, 193 |
| abstract_inverted_index.dataset. | 171 |
| abstract_inverted_index.presence | 105 |
| abstract_inverted_index.traffic, | 24 |
| abstract_inverted_index.approach. | 59 |
| abstract_inverted_index.compelled | 41 |
| abstract_inverted_index.contexts, | 9 |
| abstract_inverted_index.different | 48, 139, 155 |
| abstract_inverted_index.generally | 115 |
| abstract_inverted_index.important | 38 |
| abstract_inverted_index.perceived | 15 |
| abstract_inverted_index.possible: | 51 |
| abstract_inverted_index.so-called | 61 |
| abstract_inverted_index.sometimes | 40 |
| abstract_inverted_index.verified, | 123 |
| abstract_inverted_index.approaches | 49 |
| abstract_inverted_index.assessment | 77 |
| abstract_inverted_index.calibrated | 151 |
| abstract_inverted_index.monitoring | 35 |
| abstract_inverted_index.pollutants | 6 |
| abstract_inverted_index.presented. | 143 |
| abstract_inverted_index.regressors | 141, 148, 185 |
| abstract_inverted_index.simulation | 58 |
| abstract_inverted_index.train/test | 159 |
| abstract_inverted_index.approaches: | 156 |
| abstract_inverted_index.calibration | 190 |
| abstract_inverted_index.conditions, | 101 |
| abstract_inverted_index.description | 178 |
| abstract_inverted_index.interesting | 91 |
| abstract_inverted_index.measurement | 54 |
| abstract_inverted_index.pollutants. | 20 |
| abstract_inverted_index.qualitative | 177 |
| abstract_inverted_index.roundabouts | 107 |
| abstract_inverted_index.techniques: | 87 |
| abstract_inverted_index.experimented | 81 |
| abstract_inverted_index.functioning, | 186 |
| abstract_inverted_index.quantitative | 175 |
| abstract_inverted_index.simulations. | 203 |
| abstract_inverted_index.specifically | 22 |
| abstract_inverted_index.comprehensive | 135 |
| abstract_inverted_index.contribution, | 131 |
| abstract_inverted_index.environmental | 31 |
| abstract_inverted_index.hyperparameter | 146 |
| abstract_inverted_index.Transportation, | 21 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |