Machine Learning Systems are Bloated and Vulnerable Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1145/3639032
Today's software is bloated with both code and features that are not used by most users. This bloat is prevalent across the entire software stack, from operating systems and applications to containers. Containers are lightweight virtualization technologies used to package code and dependencies, providing portable, reproducible and isolated environments. For their ease of use, data scientists often utilize machine learning containers to simplify their workflow. However, this convenience comes at a cost: containers are often bloated with unnecessary code and dependencies, resulting in very large sizes. In this paper, we analyze and quantify bloat in machine learning containers. We develop MMLB, a framework for analyzing bloat in software systems, focusing on machine learning containers. MMLB measures the amount of bloat at both the container and package levels, quantifying the sources of bloat. In addition, MMLB integrates with vulnerability analysis tools and performs package dependency analysis to evaluate the impact of bloat on container vulnerabilities. Through experimentation with 15 machine learning containers from TensorFlow, PyTorch, and Nvidia, we show that bloat accounts for up to 80% of machine learning container sizes, increasing container provisioning times by up to 370% and exacerbating vulnerabilities by up to 99%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3639032
- https://dl.acm.org/doi/pdf/10.1145/3639032
- OA Status
- bronze
- Cited By
- 4
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391993504
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391993504Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3639032Digital Object Identifier
- Title
-
Machine Learning Systems are Bloated and VulnerableWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-16Full publication date if available
- Authors
-
Huaifeng Zhang, Mohannad Alhanahnah, Fahmi Abdulqadir Ahmed, Dyako Fatih, Philipp Leitner, Ahmed Ali-EldinList of authors in order
- Landing page
-
https://doi.org/10.1145/3639032Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3639032Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3639032Direct OA link when available
- Concepts
-
Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391993504 |
|---|---|
| doi | https://doi.org/10.1145/3639032 |
| ids.doi | https://doi.org/10.1145/3639032 |
| ids.openalex | https://openalex.org/W4391993504 |
| fwci | 2.85001706 |
| type | article |
| title | Machine Learning Systems are Bloated and Vulnerable |
| biblio.issue | 1 |
| biblio.volume | 8 |
| biblio.last_page | 30 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11241 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Advanced Malware Detection Techniques |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9972000122070312 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9846000075340271 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.36133021116256714 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.34044384956359863 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.36133021116256714 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.34044384956359863 |
| keywords[1].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1145/3639032 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210193547 |
| locations[0].source.issn | 2476-1249 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2476-1249 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the ACM on Measurement and Analysis of Computing Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_name | Association for Computing Machinery |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_lineage_names | Association for Computing Machinery |
| locations[0].license | |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3639032 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the ACM on Measurement and Analysis of Computing Systems |
| locations[0].landing_page_url | https://doi.org/10.1145/3639032 |
| locations[1].id | pmh:oai:research.chalmers.se:540207 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402469 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Chalmers Research (Chalmers University of Technology) |
| locations[1].source.host_organization | https://openalex.org/I66862912 |
| locations[1].source.host_organization_name | Chalmers University of Technology |
| locations[1].source.host_organization_lineage | https://openalex.org/I66862912 |
| locations[1].license | |
| locations[1].pdf_url | https://research.chalmers.se/publication/540207/file/540207_Fulltext.pdf |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://research.chalmers.se/en/publication/540207 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5084441135 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6492-5908 |
| authorships[0].author.display_name | Huaifeng Zhang |
| authorships[0].countries | SE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I66862912 |
| authorships[0].affiliations[0].raw_affiliation_string | Chalmers University of Technology, Gothenburg, Sweden |
| authorships[0].institutions[0].id | https://openalex.org/I66862912 |
| authorships[0].institutions[0].ror | https://ror.org/040wg7k59 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I66862912 |
| authorships[0].institutions[0].country_code | SE |
| authorships[0].institutions[0].display_name | Chalmers University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huaifeng Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Chalmers University of Technology, Gothenburg, Sweden |
| authorships[1].author.id | https://openalex.org/A5016425560 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7108-3809 |
| authorships[1].author.display_name | Mohannad Alhanahnah |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Wisconsin-Madison, Madison, WI, USA |
| authorships[1].institutions[0].id | https://openalex.org/I135310074 |
| authorships[1].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohannad Alhanahnah |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Wisconsin-Madison, Madison, WI, USA |
| authorships[2].author.id | https://openalex.org/A5090567152 |
| authorships[2].author.orcid | https://orcid.org/0009-0004-1392-5851 |
| authorships[2].author.display_name | Fahmi Abdulqadir Ahmed |
| authorships[2].countries | SE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I66862912 |
| authorships[2].affiliations[0].raw_affiliation_string | Chalmers University of Technology, Gothenburg, Sweden |
| authorships[2].institutions[0].id | https://openalex.org/I66862912 |
| authorships[2].institutions[0].ror | https://ror.org/040wg7k59 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I66862912 |
| authorships[2].institutions[0].country_code | SE |
| authorships[2].institutions[0].display_name | Chalmers University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fahmi Abdulqadir Ahmed |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Chalmers University of Technology, Gothenburg, Sweden |
| authorships[3].author.id | https://openalex.org/A5079721124 |
| authorships[3].author.orcid | https://orcid.org/0009-0002-7817-8661 |
| authorships[3].author.display_name | Dyako Fatih |
| authorships[3].countries | SE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I66862912 |
| authorships[3].affiliations[0].raw_affiliation_string | Chalmers University of Technology, Gothenburg, Sweden |
| authorships[3].institutions[0].id | https://openalex.org/I66862912 |
| authorships[3].institutions[0].ror | https://ror.org/040wg7k59 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I66862912 |
| authorships[3].institutions[0].country_code | SE |
| authorships[3].institutions[0].display_name | Chalmers University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dyako Fatih |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Chalmers University of Technology, Gothenburg, Sweden |
| authorships[4].author.id | https://openalex.org/A5030517674 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2777-528X |
| authorships[4].author.display_name | Philipp Leitner |
| authorships[4].countries | SE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I66862912, https://openalex.org/I881427289 |
| authorships[4].affiliations[0].raw_affiliation_string | Chalmers | University of Gothenburg, Gothenburg, Sweden |
| authorships[4].institutions[0].id | https://openalex.org/I66862912 |
| authorships[4].institutions[0].ror | https://ror.org/040wg7k59 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I66862912 |
| authorships[4].institutions[0].country_code | SE |
| authorships[4].institutions[0].display_name | Chalmers University of Technology |
| authorships[4].institutions[1].id | https://openalex.org/I881427289 |
| authorships[4].institutions[1].ror | https://ror.org/01tm6cn81 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I881427289 |
| authorships[4].institutions[1].country_code | SE |
| authorships[4].institutions[1].display_name | University of Gothenburg |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Philipp Leitner |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Chalmers | University of Gothenburg, Gothenburg, Sweden |
| authorships[5].author.id | https://openalex.org/A5002226825 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2774-9284 |
| authorships[5].author.display_name | Ahmed Ali-Eldin |
| authorships[5].countries | SE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I66862912 |
| authorships[5].affiliations[0].raw_affiliation_string | Chalmers University of Technology, Gothenburg, Sweden |
| authorships[5].institutions[0].id | https://openalex.org/I66862912 |
| authorships[5].institutions[0].ror | https://ror.org/040wg7k59 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I66862912 |
| authorships[5].institutions[0].country_code | SE |
| authorships[5].institutions[0].display_name | Chalmers University of Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Ahmed Ali-Eldin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Chalmers University of Technology, Gothenburg, Sweden |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3639032 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine Learning Systems are Bloated and Vulnerable |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11241 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Advanced Malware Detection Techniques |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1145/3639032 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210193547 |
| best_oa_location.source.issn | 2476-1249 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2476-1249 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the ACM on Measurement and Analysis of Computing Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_name | Association for Computing Machinery |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_lineage_names | Association for Computing Machinery |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3639032 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the ACM on Measurement and Analysis of Computing Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3639032 |
| primary_location.id | doi:10.1145/3639032 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210193547 |
| primary_location.source.issn | 2476-1249 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2476-1249 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the ACM on Measurement and Analysis of Computing Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_name | Association for Computing Machinery |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_lineage_names | Association for Computing Machinery |
| primary_location.license | |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3639032 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the ACM on Measurement and Analysis of Computing Systems |
| primary_location.landing_page_url | https://doi.org/10.1145/3639032 |
| publication_date | 2024-02-16 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2991611768, https://openalex.org/W3181319689, https://openalex.org/W3197079162, https://openalex.org/W3014403486, https://openalex.org/W2102476841, https://openalex.org/W2956105891, https://openalex.org/W3103342397, https://openalex.org/W2897338212, https://openalex.org/W2998678832, https://openalex.org/W3157884603, https://openalex.org/W2772948367, https://openalex.org/W2891688103, https://openalex.org/W2155893237, https://openalex.org/W2901078705, https://openalex.org/W3047868298, https://openalex.org/W2896958211, https://openalex.org/W4281742620, https://openalex.org/W4281396629, https://openalex.org/W3217674359, https://openalex.org/W2983188804, https://openalex.org/W2963748441, https://openalex.org/W2741175893, https://openalex.org/W2117539524, https://openalex.org/W6832573478, https://openalex.org/W3196043647, https://openalex.org/W3000784322, https://openalex.org/W3130276836, https://openalex.org/W3206951474, https://openalex.org/W4251779799, https://openalex.org/W2020779709, https://openalex.org/W4313547623, https://openalex.org/W4365505517, https://openalex.org/W3094939718, https://openalex.org/W3145959950, https://openalex.org/W4308643994, https://openalex.org/W4299301436, https://openalex.org/W95608104, https://openalex.org/W4289389632, https://openalex.org/W4205507183, https://openalex.org/W2069568053, https://openalex.org/W3102041579, https://openalex.org/W4232328730 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 70, 101 |
| abstract_inverted_index.15 | 157 |
| abstract_inverted_index.In | 86, 132 |
| abstract_inverted_index.We | 98 |
| abstract_inverted_index.at | 69, 120 |
| abstract_inverted_index.by | 13, 184, 191 |
| abstract_inverted_index.in | 82, 94, 106 |
| abstract_inverted_index.is | 2, 18 |
| abstract_inverted_index.of | 52, 118, 130, 149, 175 |
| abstract_inverted_index.on | 110, 151 |
| abstract_inverted_index.to | 30, 38, 61, 145, 173, 186, 193 |
| abstract_inverted_index.up | 172, 185, 192 |
| abstract_inverted_index.we | 89, 166 |
| abstract_inverted_index.80% | 174 |
| abstract_inverted_index.For | 49 |
| abstract_inverted_index.and | 7, 28, 41, 46, 79, 91, 124, 140, 164, 188 |
| abstract_inverted_index.are | 10, 33, 73 |
| abstract_inverted_index.for | 103, 171 |
| abstract_inverted_index.not | 11 |
| abstract_inverted_index.the | 21, 116, 122, 128, 147 |
| abstract_inverted_index.370% | 187 |
| abstract_inverted_index.99%. | 194 |
| abstract_inverted_index.MMLB | 114, 134 |
| abstract_inverted_index.This | 16 |
| abstract_inverted_index.both | 5, 121 |
| abstract_inverted_index.code | 6, 40, 78 |
| abstract_inverted_index.data | 54 |
| abstract_inverted_index.ease | 51 |
| abstract_inverted_index.from | 25, 161 |
| abstract_inverted_index.most | 14 |
| abstract_inverted_index.show | 167 |
| abstract_inverted_index.that | 9, 168 |
| abstract_inverted_index.this | 66, 87 |
| abstract_inverted_index.use, | 53 |
| abstract_inverted_index.used | 12, 37 |
| abstract_inverted_index.very | 83 |
| abstract_inverted_index.with | 4, 76, 136, 156 |
| abstract_inverted_index.MMLB, | 100 |
| abstract_inverted_index.bloat | 17, 93, 105, 119, 150, 169 |
| abstract_inverted_index.comes | 68 |
| abstract_inverted_index.cost: | 71 |
| abstract_inverted_index.large | 84 |
| abstract_inverted_index.often | 56, 74 |
| abstract_inverted_index.their | 50, 63 |
| abstract_inverted_index.times | 183 |
| abstract_inverted_index.tools | 139 |
| abstract_inverted_index.across | 20 |
| abstract_inverted_index.amount | 117 |
| abstract_inverted_index.bloat. | 131 |
| abstract_inverted_index.entire | 22 |
| abstract_inverted_index.impact | 148 |
| abstract_inverted_index.paper, | 88 |
| abstract_inverted_index.sizes, | 179 |
| abstract_inverted_index.sizes. | 85 |
| abstract_inverted_index.stack, | 24 |
| abstract_inverted_index.users. | 15 |
| abstract_inverted_index.Nvidia, | 165 |
| abstract_inverted_index.Through | 154 |
| abstract_inverted_index.Today's | 0 |
| abstract_inverted_index.analyze | 90 |
| abstract_inverted_index.bloated | 3, 75 |
| abstract_inverted_index.develop | 99 |
| abstract_inverted_index.levels, | 126 |
| abstract_inverted_index.machine | 58, 95, 111, 158, 176 |
| abstract_inverted_index.package | 39, 125, 142 |
| abstract_inverted_index.sources | 129 |
| abstract_inverted_index.systems | 27 |
| abstract_inverted_index.utilize | 57 |
| abstract_inverted_index.However, | 65 |
| abstract_inverted_index.PyTorch, | 163 |
| abstract_inverted_index.accounts | 170 |
| abstract_inverted_index.analysis | 138, 144 |
| abstract_inverted_index.evaluate | 146 |
| abstract_inverted_index.features | 8 |
| abstract_inverted_index.focusing | 109 |
| abstract_inverted_index.isolated | 47 |
| abstract_inverted_index.learning | 59, 96, 112, 159, 177 |
| abstract_inverted_index.measures | 115 |
| abstract_inverted_index.performs | 141 |
| abstract_inverted_index.quantify | 92 |
| abstract_inverted_index.simplify | 62 |
| abstract_inverted_index.software | 1, 23, 107 |
| abstract_inverted_index.systems, | 108 |
| abstract_inverted_index.addition, | 133 |
| abstract_inverted_index.analyzing | 104 |
| abstract_inverted_index.container | 123, 152, 178, 181 |
| abstract_inverted_index.framework | 102 |
| abstract_inverted_index.operating | 26 |
| abstract_inverted_index.portable, | 44 |
| abstract_inverted_index.prevalent | 19 |
| abstract_inverted_index.providing | 43 |
| abstract_inverted_index.resulting | 81 |
| abstract_inverted_index.workflow. | 64 |
| abstract_inverted_index.Containers | 32 |
| abstract_inverted_index.containers | 60, 72, 160 |
| abstract_inverted_index.dependency | 143 |
| abstract_inverted_index.increasing | 180 |
| abstract_inverted_index.integrates | 135 |
| abstract_inverted_index.scientists | 55 |
| abstract_inverted_index.TensorFlow, | 162 |
| abstract_inverted_index.containers. | 31, 97, 113 |
| abstract_inverted_index.convenience | 67 |
| abstract_inverted_index.lightweight | 34 |
| abstract_inverted_index.quantifying | 127 |
| abstract_inverted_index.unnecessary | 77 |
| abstract_inverted_index.applications | 29 |
| abstract_inverted_index.exacerbating | 189 |
| abstract_inverted_index.provisioning | 182 |
| abstract_inverted_index.reproducible | 45 |
| abstract_inverted_index.technologies | 36 |
| abstract_inverted_index.dependencies, | 42, 80 |
| abstract_inverted_index.environments. | 48 |
| abstract_inverted_index.vulnerability | 137 |
| abstract_inverted_index.virtualization | 35 |
| abstract_inverted_index.experimentation | 155 |
| abstract_inverted_index.vulnerabilities | 190 |
| abstract_inverted_index.vulnerabilities. | 153 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.85143746 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |