MACHINE LEARNING TECHNIQUES FOR CARDIOVASCULAR DISEASE PREDICTION Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.70382/bejsmsr.v9i9.013
Cardiovascular disease (CVD) continues to be the leading cause of death globally, accounting for millions of lives annually. Early and accurate prediction of CVD is critical for prevention and intervention, yet existing clinical approaches often fail to capture the complex interactions among multiple risk factors. While machine learning (ML) has been increasingly applied to CVD prediction, many studies rely on single datasets, limited sample sizes, or overlook systematic evaluation across different algorithms. This study addresses these limitations by employing a merged dataset of 920 patient records, created by integrating four well-known heart disease datasets from Cleveland, Hungarian, Switzerland, and Long Beach VA based on 11 common features. The integration enhances data diversity and improves model generalization compared to single-dataset approaches. Four supervised ML algorithms, namely, Logistic Regression, Naïve Bayes, Decision Tree, and K-Nearest Neighbour (KNN), were systematically implemented and evaluated. Data preprocessing involved feature scaling for non-tree-based algorithms and tailored encoding strategies for categorical variables. Model training and validation were carried out using Stratified 5-Fold Cross-Validation, ensuring balanced representation of classes across folds. The results shows KNN algorithm consistently outperformed all models, achieving 91.6% accuracy with precision and recall of 92%, highlighting its robustness in capturing non-linear decision boundaries in heterogeneous datasets. Importantly, the study shows that integrating multiple datasets strengthens predictive power and improves the reliability of ML models in cardiovascular diagnosis. Findings demonstrate that simple yet effective models such as KNN, when applied to enriched datasets, can deliver clinically meaningful insights and serve as practical tools for early risk detection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.70382/bejsmsr.v9i9.013
- https://berkeleypublications.com/bjsmsr/article/download/585/530
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W4415047337
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415047337Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.70382/bejsmsr.v9i9.013Digital Object Identifier
- Title
-
MACHINE LEARNING TECHNIQUES FOR CARDIOVASCULAR DISEASE PREDICTIONWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-10Full publication date if available
- Authors
-
Asegunloluwa Eunice Babalola, Tom SolomonList of authors in order
- Landing page
-
https://doi.org/10.70382/bejsmsr.v9i9.013Publisher landing page
- PDF URL
-
https://berkeleypublications.com/bjsmsr/article/download/585/530Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://berkeleypublications.com/bjsmsr/article/download/585/530Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415047337 |
|---|---|
| doi | https://doi.org/10.70382/bejsmsr.v9i9.013 |
| ids.doi | https://doi.org/10.70382/bejsmsr.v9i9.013 |
| ids.openalex | https://openalex.org/W4415047337 |
| fwci | 0.0 |
| type | article |
| title | MACHINE LEARNING TECHNIQUES FOR CARDIOVASCULAR DISEASE PREDICTION |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.8274000287055969 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.70382/bejsmsr.v9i9.013 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407044820 |
| locations[0].source.issn | 3026-8397, 3027-2939 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 3026-8397 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Systematic and Modern Science Research |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://berkeleypublications.com/bjsmsr/article/download/585/530 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Systematic and Modern Science Research |
| locations[0].landing_page_url | https://doi.org/10.70382/bejsmsr.v9i9.013 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5040566636 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4678-124X |
| authorships[0].author.display_name | Asegunloluwa Eunice Babalola |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computing, Anchor University Lagos |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None ASEGUNLOLUWA E. BABALOLA |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computing, Anchor University Lagos |
| authorships[1].author.id | https://openalex.org/A5008592726 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7266-6547 |
| authorships[1].author.display_name | Tom Solomon |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computing, Anchor University Lagos |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | None TEKENA SOLOMON |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computing, Anchor University Lagos |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://berkeleypublications.com/bjsmsr/article/download/585/530 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-11T00:00:00 |
| display_name | MACHINE LEARNING TECHNIQUES FOR CARDIOVASCULAR DISEASE PREDICTION |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.8274000287055969 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.70382/bejsmsr.v9i9.013 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407044820 |
| best_oa_location.source.issn | 3026-8397, 3027-2939 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 3026-8397 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Systematic and Modern Science Research |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://berkeleypublications.com/bjsmsr/article/download/585/530 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Systematic and Modern Science Research |
| best_oa_location.landing_page_url | https://doi.org/10.70382/bejsmsr.v9i9.013 |
| primary_location.id | doi:10.70382/bejsmsr.v9i9.013 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407044820 |
| primary_location.source.issn | 3026-8397, 3027-2939 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 3026-8397 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Systematic and Modern Science Research |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://berkeleypublications.com/bjsmsr/article/download/585/530 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Systematic and Modern Science Research |
| primary_location.landing_page_url | https://doi.org/10.70382/bejsmsr.v9i9.013 |
| publication_date | 2025-10-10 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 79 |
| abstract_inverted_index.11 | 104 |
| abstract_inverted_index.ML | 122, 218 |
| abstract_inverted_index.VA | 101 |
| abstract_inverted_index.as | 231, 245 |
| abstract_inverted_index.be | 5 |
| abstract_inverted_index.by | 77, 87 |
| abstract_inverted_index.in | 194, 199, 220 |
| abstract_inverted_index.is | 24 |
| abstract_inverted_index.of | 9, 15, 22, 82, 169, 189, 217 |
| abstract_inverted_index.on | 59, 103 |
| abstract_inverted_index.or | 65 |
| abstract_inverted_index.to | 4, 36, 53, 117, 235 |
| abstract_inverted_index.920 | 83 |
| abstract_inverted_index.CVD | 23, 54 |
| abstract_inverted_index.KNN | 176 |
| abstract_inverted_index.The | 107, 173 |
| abstract_inverted_index.all | 180 |
| abstract_inverted_index.and | 19, 28, 98, 112, 131, 138, 148, 157, 187, 213, 243 |
| abstract_inverted_index.can | 238 |
| abstract_inverted_index.for | 13, 26, 145, 152, 248 |
| abstract_inverted_index.has | 49 |
| abstract_inverted_index.its | 192 |
| abstract_inverted_index.out | 161 |
| abstract_inverted_index.the | 6, 38, 203, 215 |
| abstract_inverted_index.yet | 30, 227 |
| abstract_inverted_index.(ML) | 48 |
| abstract_inverted_index.92%, | 190 |
| abstract_inverted_index.Data | 140 |
| abstract_inverted_index.Four | 120 |
| abstract_inverted_index.KNN, | 232 |
| abstract_inverted_index.Long | 99 |
| abstract_inverted_index.This | 72 |
| abstract_inverted_index.been | 50 |
| abstract_inverted_index.data | 110 |
| abstract_inverted_index.fail | 35 |
| abstract_inverted_index.four | 89 |
| abstract_inverted_index.from | 94 |
| abstract_inverted_index.many | 56 |
| abstract_inverted_index.rely | 58 |
| abstract_inverted_index.risk | 43, 250 |
| abstract_inverted_index.such | 230 |
| abstract_inverted_index.that | 206, 225 |
| abstract_inverted_index.were | 135, 159 |
| abstract_inverted_index.when | 233 |
| abstract_inverted_index.with | 185 |
| abstract_inverted_index.(CVD) | 2 |
| abstract_inverted_index.91.6% | 183 |
| abstract_inverted_index.Beach | 100 |
| abstract_inverted_index.Early | 18 |
| abstract_inverted_index.Model | 155 |
| abstract_inverted_index.Tree, | 130 |
| abstract_inverted_index.While | 45 |
| abstract_inverted_index.among | 41 |
| abstract_inverted_index.based | 102 |
| abstract_inverted_index.cause | 8 |
| abstract_inverted_index.death | 10 |
| abstract_inverted_index.early | 249 |
| abstract_inverted_index.heart | 91 |
| abstract_inverted_index.lives | 16 |
| abstract_inverted_index.model | 114 |
| abstract_inverted_index.often | 34 |
| abstract_inverted_index.power | 212 |
| abstract_inverted_index.serve | 244 |
| abstract_inverted_index.shows | 175, 205 |
| abstract_inverted_index.study | 73, 204 |
| abstract_inverted_index.these | 75 |
| abstract_inverted_index.tools | 247 |
| abstract_inverted_index.using | 162 |
| abstract_inverted_index.(KNN), | 134 |
| abstract_inverted_index.5-Fold | 164 |
| abstract_inverted_index.Bayes, | 128 |
| abstract_inverted_index.Naïve | 127 |
| abstract_inverted_index.across | 69, 171 |
| abstract_inverted_index.common | 105 |
| abstract_inverted_index.folds. | 172 |
| abstract_inverted_index.merged | 80 |
| abstract_inverted_index.models | 219, 229 |
| abstract_inverted_index.recall | 188 |
| abstract_inverted_index.sample | 63 |
| abstract_inverted_index.simple | 226 |
| abstract_inverted_index.single | 60 |
| abstract_inverted_index.sizes, | 64 |
| abstract_inverted_index.applied | 52, 234 |
| abstract_inverted_index.capture | 37 |
| abstract_inverted_index.carried | 160 |
| abstract_inverted_index.classes | 170 |
| abstract_inverted_index.complex | 39 |
| abstract_inverted_index.created | 86 |
| abstract_inverted_index.dataset | 81 |
| abstract_inverted_index.deliver | 239 |
| abstract_inverted_index.disease | 1, 92 |
| abstract_inverted_index.feature | 143 |
| abstract_inverted_index.leading | 7 |
| abstract_inverted_index.limited | 62 |
| abstract_inverted_index.machine | 46 |
| abstract_inverted_index.models, | 181 |
| abstract_inverted_index.namely, | 124 |
| abstract_inverted_index.patient | 84 |
| abstract_inverted_index.results | 174 |
| abstract_inverted_index.scaling | 144 |
| abstract_inverted_index.studies | 57 |
| abstract_inverted_index.Decision | 129 |
| abstract_inverted_index.Findings | 223 |
| abstract_inverted_index.Logistic | 125 |
| abstract_inverted_index.accuracy | 184 |
| abstract_inverted_index.accurate | 20 |
| abstract_inverted_index.balanced | 167 |
| abstract_inverted_index.clinical | 32 |
| abstract_inverted_index.compared | 116 |
| abstract_inverted_index.critical | 25 |
| abstract_inverted_index.datasets | 93, 209 |
| abstract_inverted_index.decision | 197 |
| abstract_inverted_index.encoding | 150 |
| abstract_inverted_index.enhances | 109 |
| abstract_inverted_index.enriched | 236 |
| abstract_inverted_index.ensuring | 166 |
| abstract_inverted_index.existing | 31 |
| abstract_inverted_index.factors. | 44 |
| abstract_inverted_index.improves | 113, 214 |
| abstract_inverted_index.insights | 242 |
| abstract_inverted_index.involved | 142 |
| abstract_inverted_index.learning | 47 |
| abstract_inverted_index.millions | 14 |
| abstract_inverted_index.multiple | 42, 208 |
| abstract_inverted_index.overlook | 66 |
| abstract_inverted_index.records, | 85 |
| abstract_inverted_index.tailored | 149 |
| abstract_inverted_index.training | 156 |
| abstract_inverted_index.K-Nearest | 132 |
| abstract_inverted_index.Neighbour | 133 |
| abstract_inverted_index.achieving | 182 |
| abstract_inverted_index.addresses | 74 |
| abstract_inverted_index.algorithm | 177 |
| abstract_inverted_index.annually. | 17 |
| abstract_inverted_index.capturing | 195 |
| abstract_inverted_index.continues | 3 |
| abstract_inverted_index.datasets, | 61, 237 |
| abstract_inverted_index.datasets. | 201 |
| abstract_inverted_index.different | 70 |
| abstract_inverted_index.diversity | 111 |
| abstract_inverted_index.effective | 228 |
| abstract_inverted_index.employing | 78 |
| abstract_inverted_index.features. | 106 |
| abstract_inverted_index.globally, | 11 |
| abstract_inverted_index.practical | 246 |
| abstract_inverted_index.precision | 186 |
| abstract_inverted_index.Cleveland, | 95 |
| abstract_inverted_index.Hungarian, | 96 |
| abstract_inverted_index.Stratified | 163 |
| abstract_inverted_index.accounting | 12 |
| abstract_inverted_index.algorithms | 147 |
| abstract_inverted_index.approaches | 33 |
| abstract_inverted_index.boundaries | 198 |
| abstract_inverted_index.clinically | 240 |
| abstract_inverted_index.detection. | 251 |
| abstract_inverted_index.diagnosis. | 222 |
| abstract_inverted_index.evaluated. | 139 |
| abstract_inverted_index.evaluation | 68 |
| abstract_inverted_index.meaningful | 241 |
| abstract_inverted_index.non-linear | 196 |
| abstract_inverted_index.prediction | 21 |
| abstract_inverted_index.predictive | 211 |
| abstract_inverted_index.prevention | 27 |
| abstract_inverted_index.robustness | 193 |
| abstract_inverted_index.strategies | 151 |
| abstract_inverted_index.supervised | 121 |
| abstract_inverted_index.systematic | 67 |
| abstract_inverted_index.validation | 158 |
| abstract_inverted_index.variables. | 154 |
| abstract_inverted_index.well-known | 90 |
| abstract_inverted_index.Regression, | 126 |
| abstract_inverted_index.algorithms, | 123 |
| abstract_inverted_index.algorithms. | 71 |
| abstract_inverted_index.approaches. | 119 |
| abstract_inverted_index.categorical | 153 |
| abstract_inverted_index.demonstrate | 224 |
| abstract_inverted_index.implemented | 137 |
| abstract_inverted_index.integrating | 88, 207 |
| abstract_inverted_index.integration | 108 |
| abstract_inverted_index.limitations | 76 |
| abstract_inverted_index.prediction, | 55 |
| abstract_inverted_index.reliability | 216 |
| abstract_inverted_index.strengthens | 210 |
| abstract_inverted_index.Importantly, | 202 |
| abstract_inverted_index.Switzerland, | 97 |
| abstract_inverted_index.consistently | 178 |
| abstract_inverted_index.highlighting | 191 |
| abstract_inverted_index.increasingly | 51 |
| abstract_inverted_index.interactions | 40 |
| abstract_inverted_index.outperformed | 179 |
| abstract_inverted_index.heterogeneous | 200 |
| abstract_inverted_index.intervention, | 29 |
| abstract_inverted_index.preprocessing | 141 |
| abstract_inverted_index.Cardiovascular | 0 |
| abstract_inverted_index.cardiovascular | 221 |
| abstract_inverted_index.generalization | 115 |
| abstract_inverted_index.non-tree-based | 146 |
| abstract_inverted_index.representation | 168 |
| abstract_inverted_index.single-dataset | 118 |
| abstract_inverted_index.systematically | 136 |
| abstract_inverted_index.Cross-Validation, | 165 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.62055443 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |