Machine learning to detect schedules using spatiotemporal data of behavior: A proof of concept Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1002/jeab.70029
Traditionally, the experimental analysis of behavior has relied on the single discrete response paradigm (e.g., key pecks, lever presses, screen clicks) to identify behavioral patterns. However, the development and availability of new technology allow researchers to move beyond this paradigm and use other features to detect schedules. Thus, our study used spatiotemporal data to compare the accuracy of four machine learning algorithms (i.e., logistic regression, support vector classifiers, random forests, and artificial neural networks) in detecting the presence and the components of time‐based schedules in 12 rats involved in a behavioral experiment. Using spatiotemporal data, the algorithms accurately identified the presence or absence of programmed schedules and correctly differentiated between fixed‐ and variable‐space schedules. That said, our analyses failed to identify an algorithm to discriminate fixed‐time from variable‐time schedules. Furthermore, none of the algorithms performed systematically better than the others. Our findings provide preliminary support for the utility of using spatiotemporal data with machine learning to detect stimulus schedules.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/jeab.70029
- OA Status
- hybrid
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411917615
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411917615Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/jeab.70029Digital Object Identifier
- Title
-
Machine learning to detect schedules using spatiotemporal data of behavior: A proof of conceptWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-30Full publication date if available
- Authors
-
Marc J. Lanovaz, Varsovia Hernández, Alejandro LeónList of authors in order
- Landing page
-
https://doi.org/10.1002/jeab.70029Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1002/jeab.70029Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Machine learning, Random forest, Support vector machine, Artificial neural network, Animal behavior, Lever, Behavioral pattern, Key (lock), Variable (mathematics), Mathematics, Software engineering, Biology, Mathematical analysis, Quantum mechanics, Computer security, Zoology, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411917615 |
|---|---|
| doi | https://doi.org/10.1002/jeab.70029 |
| ids.doi | https://doi.org/10.1002/jeab.70029 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40588765 |
| ids.openalex | https://openalex.org/W4411917615 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000818 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Animals |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000069550 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Machine Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D051381 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Rats |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D008297 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Male |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000465 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Algorithms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D012055 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Reinforcement Schedule |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D016571 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Neural Networks, Computer |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000075082 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Proof of Concept Study |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D062211 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Spatio-Temporal Analysis |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D003216 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Conditioning, Operant |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D060388 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Support Vector Machine |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D020318 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Rats, Long-Evans |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000818 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Animals |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000069550 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Machine Learning |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D051381 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Rats |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D008297 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Male |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000465 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Algorithms |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D012055 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Reinforcement Schedule |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D016571 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Neural Networks, Computer |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000075082 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Proof of Concept Study |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D062211 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Spatio-Temporal Analysis |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D003216 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Conditioning, Operant |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D060388 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Support Vector Machine |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D020318 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Rats, Long-Evans |
| type | article |
| title | Machine learning to detect schedules using spatiotemporal data of behavior: A proof of concept |
| biblio.issue | 1 |
| biblio.volume | 124 |
| biblio.last_page | e70029 |
| biblio.first_page | e70029 |
| topics[0].id | https://openalex.org/T10826 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9846000075340271 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3204 |
| topics[0].subfield.display_name | Developmental and Educational Psychology |
| topics[0].display_name | Behavioral and Psychological Studies |
| topics[1].id | https://openalex.org/T10971 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9807999730110168 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2809 |
| topics[1].subfield.display_name | Sensory Systems |
| topics[1].display_name | Olfactory and Sensory Function Studies |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9736999869346619 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| is_xpac | False |
| apc_list.value | 2940 |
| apc_list.currency | USD |
| apc_list.value_usd | 2940 |
| apc_paid.value | 2940 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2940 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7386270761489868 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6792038679122925 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.629153311252594 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C169258074 |
| concepts[3].level | 2 |
| concepts[3].score | 0.533636212348938 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[3].display_name | Random forest |
| concepts[4].id | https://openalex.org/C12267149 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48649710416793823 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[4].display_name | Support vector machine |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4805896282196045 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C2988419192 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4742794930934906 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7155 |
| concepts[6].display_name | Animal behavior |
| concepts[7].id | https://openalex.org/C107524782 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45642349123954773 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q40164 |
| concepts[7].display_name | Lever |
| concepts[8].id | https://openalex.org/C83804111 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4460160732269287 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1063558 |
| concepts[8].display_name | Behavioral pattern |
| concepts[9].id | https://openalex.org/C26517878 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4409666657447815 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[9].display_name | Key (lock) |
| concepts[10].id | https://openalex.org/C182365436 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43013662099838257 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q50701 |
| concepts[10].display_name | Variable (mathematics) |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.10507383942604065 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C115903868 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q80993 |
| concepts[12].display_name | Software engineering |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| concepts[16].id | https://openalex.org/C38652104 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[16].display_name | Computer security |
| concepts[17].id | https://openalex.org/C90856448 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q431 |
| concepts[17].display_name | Zoology |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7386270761489868 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6792038679122925 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.629153311252594 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/random-forest |
| keywords[3].score | 0.533636212348938 |
| keywords[3].display_name | Random forest |
| keywords[4].id | https://openalex.org/keywords/support-vector-machine |
| keywords[4].score | 0.48649710416793823 |
| keywords[4].display_name | Support vector machine |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.4805896282196045 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/animal-behavior |
| keywords[6].score | 0.4742794930934906 |
| keywords[6].display_name | Animal behavior |
| keywords[7].id | https://openalex.org/keywords/lever |
| keywords[7].score | 0.45642349123954773 |
| keywords[7].display_name | Lever |
| keywords[8].id | https://openalex.org/keywords/behavioral-pattern |
| keywords[8].score | 0.4460160732269287 |
| keywords[8].display_name | Behavioral pattern |
| keywords[9].id | https://openalex.org/keywords/key |
| keywords[9].score | 0.4409666657447815 |
| keywords[9].display_name | Key (lock) |
| keywords[10].id | https://openalex.org/keywords/variable |
| keywords[10].score | 0.43013662099838257 |
| keywords[10].display_name | Variable (mathematics) |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.10507383942604065 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1002/jeab.70029 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S168850678 |
| locations[0].source.issn | 0022-5002, 1938-3711 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0022-5002 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of the Experimental Analysis of Behavior |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of the Experimental Analysis of Behavior |
| locations[0].landing_page_url | https://doi.org/10.1002/jeab.70029 |
| locations[1].id | pmid:40588765 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of the experimental analysis of behavior |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40588765 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:12209495 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Exp Anal Behav |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12209495 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5025683357 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9023-0314 |
| authorships[0].author.display_name | Marc J. Lanovaz |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210121083, https://openalex.org/I4210130461 |
| authorships[0].affiliations[0].raw_affiliation_string | Centre de recherche de l'Institut universitaire en santé mentale de Montréal Canada |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I70931966 |
| authorships[0].affiliations[1].raw_affiliation_string | École de psychoéducation Université de Montréal Canada |
| authorships[0].institutions[0].id | https://openalex.org/I4210130461 |
| authorships[0].institutions[0].ror | https://ror.org/02twt6343 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210130461 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | Hôpital Louis-H Lafontaine |
| authorships[0].institutions[1].id | https://openalex.org/I4210121083 |
| authorships[0].institutions[1].ror | https://ror.org/03mt5nv96 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210121083, https://openalex.org/I4392738268 |
| authorships[0].institutions[1].country_code | CA |
| authorships[0].institutions[1].display_name | Institut Universitaire en Santé Mentale de Québec |
| authorships[0].institutions[2].id | https://openalex.org/I70931966 |
| authorships[0].institutions[2].ror | https://ror.org/0161xgx34 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I70931966 |
| authorships[0].institutions[2].country_code | CA |
| authorships[0].institutions[2].display_name | Université de Montréal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Marc J. Lanovaz |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Centre de recherche de l'Institut universitaire en santé mentale de Montréal Canada, École de psychoéducation Université de Montréal Canada |
| authorships[1].author.id | https://openalex.org/A5007358357 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6849-8461 |
| authorships[1].author.display_name | Varsovia Hernández |
| authorships[1].countries | MX |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I147280213 |
| authorships[1].affiliations[0].raw_affiliation_string | Centro de Investigaciones Biomédicas Universidad Veracruzana Mexico |
| authorships[1].institutions[0].id | https://openalex.org/I147280213 |
| authorships[1].institutions[0].ror | https://ror.org/03efxn362 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I147280213 |
| authorships[1].institutions[0].country_code | MX |
| authorships[1].institutions[0].display_name | Universidad Veracruzana |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Varsovia Hernandez |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Centro de Investigaciones Biomédicas Universidad Veracruzana Mexico |
| authorships[2].author.id | https://openalex.org/A5013860873 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7386-9784 |
| authorships[2].author.display_name | Alejandro León |
| authorships[2].countries | MX |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I147280213 |
| authorships[2].affiliations[0].raw_affiliation_string | Centro de Investigaciones Biomédicas Universidad Veracruzana Mexico |
| authorships[2].institutions[0].id | https://openalex.org/I147280213 |
| authorships[2].institutions[0].ror | https://ror.org/03efxn362 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I147280213 |
| authorships[2].institutions[0].country_code | MX |
| authorships[2].institutions[0].display_name | Universidad Veracruzana |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Alejandro León |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Centro de Investigaciones Biomédicas Universidad Veracruzana Mexico |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1002/jeab.70029 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine learning to detect schedules using spatiotemporal data of behavior: A proof of concept |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-08T23:21:52.890332 |
| primary_topic.id | https://openalex.org/T10826 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9846000075340271 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3204 |
| primary_topic.subfield.display_name | Developmental and Educational Psychology |
| primary_topic.display_name | Behavioral and Psychological Studies |
| related_works | https://openalex.org/W4396689146, https://openalex.org/W4200112873, https://openalex.org/W2955796858, https://openalex.org/W2004826645, https://openalex.org/W3167922770, https://openalex.org/W3101058832, https://openalex.org/W2463763430, https://openalex.org/W2955600201, https://openalex.org/W2606986416, https://openalex.org/W2964246295 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1002/jeab.70029 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S168850678 |
| best_oa_location.source.issn | 0022-5002, 1938-3711 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0022-5002 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of the Experimental Analysis of Behavior |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of the Experimental Analysis of Behavior |
| best_oa_location.landing_page_url | https://doi.org/10.1002/jeab.70029 |
| primary_location.id | doi:10.1002/jeab.70029 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S168850678 |
| primary_location.source.issn | 0022-5002, 1938-3711 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0022-5002 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of the Experimental Analysis of Behavior |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of the Experimental Analysis of Behavior |
| primary_location.landing_page_url | https://doi.org/10.1002/jeab.70029 |
| publication_date | 2025-06-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2008463690, https://openalex.org/W1985372952, https://openalex.org/W2911964244, https://openalex.org/W2992956967, https://openalex.org/W2317923214, https://openalex.org/W3023211159, https://openalex.org/W1981976602, https://openalex.org/W2161147021, https://openalex.org/W2091569148, https://openalex.org/W2483625864, https://openalex.org/W3185283233, https://openalex.org/W2558465545, https://openalex.org/W3163565401, https://openalex.org/W3111639540, https://openalex.org/W3205912557, https://openalex.org/W4323568487, https://openalex.org/W4224248402, https://openalex.org/W2967493676, https://openalex.org/W1508550656, https://openalex.org/W2158298865, https://openalex.org/W1985768949, https://openalex.org/W2057748516, https://openalex.org/W1983447906, https://openalex.org/W2121394390, https://openalex.org/W3102036332, https://openalex.org/W2000769684, https://openalex.org/W2284729062, https://openalex.org/W3008284915, https://openalex.org/W3126951675 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 90 |
| abstract_inverted_index.12 | 86 |
| abstract_inverted_index.an | 122 |
| abstract_inverted_index.in | 75, 85, 89 |
| abstract_inverted_index.of | 5, 31, 58, 82, 104, 132, 149 |
| abstract_inverted_index.on | 9 |
| abstract_inverted_index.or | 102 |
| abstract_inverted_index.to | 22, 36, 45, 54, 120, 124, 156 |
| abstract_inverted_index.Our | 141 |
| abstract_inverted_index.and | 29, 41, 71, 79, 107, 112 |
| abstract_inverted_index.for | 146 |
| abstract_inverted_index.has | 7 |
| abstract_inverted_index.key | 16 |
| abstract_inverted_index.new | 32 |
| abstract_inverted_index.our | 49, 117 |
| abstract_inverted_index.the | 2, 10, 27, 56, 77, 80, 96, 100, 133, 139, 147 |
| abstract_inverted_index.use | 42 |
| abstract_inverted_index.That | 115 |
| abstract_inverted_index.data | 53, 152 |
| abstract_inverted_index.four | 59 |
| abstract_inverted_index.from | 127 |
| abstract_inverted_index.move | 37 |
| abstract_inverted_index.none | 131 |
| abstract_inverted_index.rats | 87 |
| abstract_inverted_index.than | 138 |
| abstract_inverted_index.this | 39 |
| abstract_inverted_index.used | 51 |
| abstract_inverted_index.with | 153 |
| abstract_inverted_index.Thus, | 48 |
| abstract_inverted_index.Using | 93 |
| abstract_inverted_index.allow | 34 |
| abstract_inverted_index.data, | 95 |
| abstract_inverted_index.lever | 18 |
| abstract_inverted_index.other | 43 |
| abstract_inverted_index.said, | 116 |
| abstract_inverted_index.study | 50 |
| abstract_inverted_index.using | 150 |
| abstract_inverted_index.(e.g., | 15 |
| abstract_inverted_index.(i.e., | 63 |
| abstract_inverted_index.better | 137 |
| abstract_inverted_index.beyond | 38 |
| abstract_inverted_index.detect | 46, 157 |
| abstract_inverted_index.failed | 119 |
| abstract_inverted_index.neural | 73 |
| abstract_inverted_index.pecks, | 17 |
| abstract_inverted_index.random | 69 |
| abstract_inverted_index.relied | 8 |
| abstract_inverted_index.screen | 20 |
| abstract_inverted_index.single | 11 |
| abstract_inverted_index.vector | 67 |
| abstract_inverted_index.absence | 103 |
| abstract_inverted_index.between | 110 |
| abstract_inverted_index.clicks) | 21 |
| abstract_inverted_index.compare | 55 |
| abstract_inverted_index.machine | 60, 154 |
| abstract_inverted_index.others. | 140 |
| abstract_inverted_index.provide | 143 |
| abstract_inverted_index.support | 66, 145 |
| abstract_inverted_index.utility | 148 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 26 |
| abstract_inverted_index.accuracy | 57 |
| abstract_inverted_index.analyses | 118 |
| abstract_inverted_index.analysis | 4 |
| abstract_inverted_index.behavior | 6 |
| abstract_inverted_index.discrete | 12 |
| abstract_inverted_index.features | 44 |
| abstract_inverted_index.findings | 142 |
| abstract_inverted_index.fixed‐ | 111 |
| abstract_inverted_index.forests, | 70 |
| abstract_inverted_index.identify | 23, 121 |
| abstract_inverted_index.involved | 88 |
| abstract_inverted_index.learning | 61, 155 |
| abstract_inverted_index.logistic | 64 |
| abstract_inverted_index.paradigm | 14, 40 |
| abstract_inverted_index.presence | 78, 101 |
| abstract_inverted_index.presses, | 19 |
| abstract_inverted_index.response | 13 |
| abstract_inverted_index.stimulus | 158 |
| abstract_inverted_index.algorithm | 123 |
| abstract_inverted_index.correctly | 108 |
| abstract_inverted_index.detecting | 76 |
| abstract_inverted_index.networks) | 74 |
| abstract_inverted_index.patterns. | 25 |
| abstract_inverted_index.performed | 135 |
| abstract_inverted_index.schedules | 84, 106 |
| abstract_inverted_index.accurately | 98 |
| abstract_inverted_index.algorithms | 62, 97, 134 |
| abstract_inverted_index.artificial | 72 |
| abstract_inverted_index.behavioral | 24, 91 |
| abstract_inverted_index.components | 81 |
| abstract_inverted_index.identified | 99 |
| abstract_inverted_index.programmed | 105 |
| abstract_inverted_index.schedules. | 47, 114, 129, 159 |
| abstract_inverted_index.technology | 33 |
| abstract_inverted_index.development | 28 |
| abstract_inverted_index.experiment. | 92 |
| abstract_inverted_index.preliminary | 144 |
| abstract_inverted_index.regression, | 65 |
| abstract_inverted_index.researchers | 35 |
| abstract_inverted_index.Furthermore, | 130 |
| abstract_inverted_index.availability | 30 |
| abstract_inverted_index.classifiers, | 68 |
| abstract_inverted_index.discriminate | 125 |
| abstract_inverted_index.experimental | 3 |
| abstract_inverted_index.fixed‐time | 126 |
| abstract_inverted_index.time‐based | 83 |
| abstract_inverted_index.Traditionally, | 1 |
| abstract_inverted_index.differentiated | 109 |
| abstract_inverted_index.spatiotemporal | 52, 94, 151 |
| abstract_inverted_index.systematically | 136 |
| abstract_inverted_index.variable‐time | 128 |
| abstract_inverted_index.variable‐space | 113 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6899999976158142 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.29525068 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |