Machine learning–based predictive model for post-stroke dementia Article Swipe
Zemin Wei
,
Mengqi Li
,
Chenghui Zhang
,
Jinli Miao
,
Wenmin Wang
,
Hong Fan
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1186/s12911-024-02752-4
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1186/s12911-024-02752-4
Our findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s12911-024-02752-4
- https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-024-02752-4
- OA Status
- gold
- Cited By
- 4
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404227647
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404227647Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s12911-024-02752-4Digital Object Identifier
- Title
-
Machine learning–based predictive model for post-stroke dementiaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-11Full publication date if available
- Authors
-
Zemin Wei, Mengqi Li, Chenghui Zhang, Jinli Miao, Wenmin Wang, Hong FanList of authors in order
- Landing page
-
https://doi.org/10.1186/s12911-024-02752-4Publisher landing page
- PDF URL
-
https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-024-02752-4Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-024-02752-4Direct OA link when available
- Concepts
-
Health informatics, Dementia, Stroke (engine), Computer science, Medicine, Artificial intelligence, Machine learning, Physical medicine and rehabilitation, Public health, Nursing, Internal medicine, Engineering, Mechanical engineering, DiseaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404227647 |
|---|---|
| doi | https://doi.org/10.1186/s12911-024-02752-4 |
| ids.doi | https://doi.org/10.1186/s12911-024-02752-4 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39529118 |
| ids.openalex | https://openalex.org/W4404227647 |
| fwci | 2.14878665 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000069550 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Machine Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000368 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Aged |
| mesh[3].qualifier_ui | Q000150 |
| mesh[3].descriptor_ui | D020521 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | complications |
| mesh[3].descriptor_name | Stroke |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008297 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Male |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D005260 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Female |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D003704 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Dementia |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D008875 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Middle Aged |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000369 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Aged, 80 and over |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000069550 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Machine Learning |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000368 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Aged |
| mesh[12].qualifier_ui | Q000150 |
| mesh[12].descriptor_ui | D020521 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | complications |
| mesh[12].descriptor_name | Stroke |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D008297 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Male |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D005260 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Female |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D003704 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Dementia |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D008875 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Middle Aged |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000369 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Aged, 80 and over |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D006801 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Humans |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000069550 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Machine Learning |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D000368 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Aged |
| mesh[21].qualifier_ui | Q000150 |
| mesh[21].descriptor_ui | D020521 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | complications |
| mesh[21].descriptor_name | Stroke |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D008297 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Male |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D005260 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Female |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D003704 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Dementia |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D008875 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Middle Aged |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D000369 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Aged, 80 and over |
| type | article |
| title | Machine learning–based predictive model for post-stroke dementia |
| awards[0].id | https://openalex.org/G5861725873 |
| awards[0].funder_id | https://openalex.org/F4320338465 |
| awards[0].display_name | |
| awards[0].funder_award_id | LGF20H170005 |
| awards[0].funder_display_name | Zhejiang Province Public Welfare Technology Application Research Project |
| biblio.issue | 1 |
| biblio.volume | 24 |
| biblio.last_page | 334 |
| biblio.first_page | 334 |
| topics[0].id | https://openalex.org/T10510 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9750999808311462 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2742 |
| topics[0].subfield.display_name | Rehabilitation |
| topics[0].display_name | Stroke Rehabilitation and Recovery |
| topics[1].id | https://openalex.org/T10009 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9732000231742859 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2738 |
| topics[1].subfield.display_name | Psychiatry and Mental health |
| topics[1].display_name | Dementia and Cognitive Impairment Research |
| topics[2].id | https://openalex.org/T10227 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9664999842643738 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Acute Ischemic Stroke Management |
| funders[0].id | https://openalex.org/F4320338465 |
| funders[0].ror | |
| funders[0].display_name | Zhejiang Province Public Welfare Technology Application Research Project |
| is_xpac | False |
| apc_list.value | 1570 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1925 |
| apc_paid.value | 1570 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1925 |
| concepts[0].id | https://openalex.org/C145642194 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6313344240188599 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q870895 |
| concepts[0].display_name | Health informatics |
| concepts[1].id | https://openalex.org/C2779483572 |
| concepts[1].level | 3 |
| concepts[1].score | 0.621033787727356 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q83030 |
| concepts[1].display_name | Dementia |
| concepts[2].id | https://openalex.org/C2780645631 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5703684687614441 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q671554 |
| concepts[2].display_name | Stroke (engine) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4470672607421875 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.38402700424194336 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3710238039493561 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3669445812702179 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C99508421 |
| concepts[7].level | 1 |
| concepts[7].score | 0.355044960975647 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[7].display_name | Physical medicine and rehabilitation |
| concepts[8].id | https://openalex.org/C138816342 |
| concepts[8].level | 2 |
| concepts[8].score | 0.14610961079597473 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q189603 |
| concepts[8].display_name | Public health |
| concepts[9].id | https://openalex.org/C159110408 |
| concepts[9].level | 1 |
| concepts[9].score | 0.13544398546218872 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q121176 |
| concepts[9].display_name | Nursing |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.10159161686897278 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.07822006940841675 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C78519656 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[12].display_name | Mechanical engineering |
| concepts[13].id | https://openalex.org/C2779134260 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[13].display_name | Disease |
| keywords[0].id | https://openalex.org/keywords/health-informatics |
| keywords[0].score | 0.6313344240188599 |
| keywords[0].display_name | Health informatics |
| keywords[1].id | https://openalex.org/keywords/dementia |
| keywords[1].score | 0.621033787727356 |
| keywords[1].display_name | Dementia |
| keywords[2].id | https://openalex.org/keywords/stroke |
| keywords[2].score | 0.5703684687614441 |
| keywords[2].display_name | Stroke (engine) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4470672607421875 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.38402700424194336 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3710238039493561 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.3669445812702179 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[7].score | 0.355044960975647 |
| keywords[7].display_name | Physical medicine and rehabilitation |
| keywords[8].id | https://openalex.org/keywords/public-health |
| keywords[8].score | 0.14610961079597473 |
| keywords[8].display_name | Public health |
| keywords[9].id | https://openalex.org/keywords/nursing |
| keywords[9].score | 0.13544398546218872 |
| keywords[9].display_name | Nursing |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.10159161686897278 |
| keywords[10].display_name | Internal medicine |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.07822006940841675 |
| keywords[11].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1186/s12911-024-02752-4 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S107516304 |
| locations[0].source.issn | 1472-6947 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1472-6947 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | BMC Medical Informatics and Decision Making |
| locations[0].source.host_organization | https://openalex.org/P4310320256 |
| locations[0].source.host_organization_name | BioMed Central |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | BioMed Central, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-024-02752-4 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | BMC Medical Informatics and Decision Making |
| locations[0].landing_page_url | https://doi.org/10.1186/s12911-024-02752-4 |
| locations[1].id | pmid:39529118 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | BMC medical informatics and decision making |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39529118 |
| locations[2].id | pmh:oai:doaj.org/article:25bda00f2c1244e6a8657b6739cb972c |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | BMC Medical Informatics and Decision Making, Vol 24, Iss 1, Pp 1-9 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/25bda00f2c1244e6a8657b6739cb972c |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11555950 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | BMC Med Inform Decis Mak |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11555950 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5025797681 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-2143-7773 |
| authorships[0].author.display_name | Zemin Wei |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210160695 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Geriatrics, Shaoxing People's Hospital, Shaoxing, Zhejiang, P. R. China. |
| authorships[0].institutions[0].id | https://openalex.org/I4210160695 |
| authorships[0].institutions[0].ror | https://ror.org/05v58y004 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210160695 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shaoxing People's Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zemin Wei |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Geriatrics, Shaoxing People's Hospital, Shaoxing, Zhejiang, P. R. China. |
| authorships[1].author.id | https://openalex.org/A5100662604 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1171-5648 |
| authorships[1].author.display_name | Mengqi Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I192209268 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Medicine, Shaoxing University, Shaoxing, Zhejiang, P. R. China. |
| authorships[1].institutions[0].id | https://openalex.org/I192209268 |
| authorships[1].institutions[0].ror | https://ror.org/0435tej63 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I192209268 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shaoxing University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mengqi Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Medicine, Shaoxing University, Shaoxing, Zhejiang, P. R. China. |
| authorships[2].author.id | https://openalex.org/A5100641479 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2317-5930 |
| authorships[2].author.display_name | Chenghui Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I192209268 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Medicine, Shaoxing University, Shaoxing, Zhejiang, P. R. China. |
| authorships[2].institutions[0].id | https://openalex.org/I192209268 |
| authorships[2].institutions[0].ror | https://ror.org/0435tej63 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I192209268 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shaoxing University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chenghui Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Medicine, Shaoxing University, Shaoxing, Zhejiang, P. R. China. |
| authorships[3].author.id | https://openalex.org/A5100547508 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jinli Miao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[3].affiliations[0].raw_affiliation_string | The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University, Hangzhou, 314006, Zhejiang, P.R. China. |
| authorships[3].institutions[0].id | https://openalex.org/I99065089 |
| authorships[3].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Tsinghua University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jinli Miao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University, Hangzhou, 314006, Zhejiang, P.R. China. |
| authorships[4].author.id | https://openalex.org/A5017052768 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2664-4413 |
| authorships[4].author.display_name | Wenmin Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[4].affiliations[0].raw_affiliation_string | The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University, Hangzhou, 314006, Zhejiang, P.R. China. |
| authorships[4].institutions[0].id | https://openalex.org/I99065089 |
| authorships[4].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Tsinghua University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wenmin Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University, Hangzhou, 314006, Zhejiang, P.R. China. |
| authorships[5].author.id | https://openalex.org/A5024011823 |
| authorships[5].author.orcid | https://orcid.org/0009-0004-1309-1295 |
| authorships[5].author.display_name | Hong Fan |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210160695 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Geriatrics, Shaoxing People's Hospital, Shaoxing, Zhejiang, P. R. China. [email protected]. |
| authorships[5].institutions[0].id | https://openalex.org/I4210160695 |
| authorships[5].institutions[0].ror | https://ror.org/05v58y004 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210160695 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shaoxing People's Hospital |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Hong Fan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Geriatrics, Shaoxing People's Hospital, Shaoxing, Zhejiang, P. R. China. [email protected]. |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-024-02752-4 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machine learning–based predictive model for post-stroke dementia |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10510 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9750999808311462 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2742 |
| primary_topic.subfield.display_name | Rehabilitation |
| primary_topic.display_name | Stroke Rehabilitation and Recovery |
| related_works | https://openalex.org/W2409059799, https://openalex.org/W364817481, https://openalex.org/W1972242255, https://openalex.org/W2890927416, https://openalex.org/W2775021631, https://openalex.org/W2128765271, https://openalex.org/W2966412519, https://openalex.org/W2028416698, https://openalex.org/W3126949736, https://openalex.org/W4285295191 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1186/s12911-024-02752-4 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S107516304 |
| best_oa_location.source.issn | 1472-6947 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1472-6947 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | BMC Medical Informatics and Decision Making |
| best_oa_location.source.host_organization | https://openalex.org/P4310320256 |
| best_oa_location.source.host_organization_name | BioMed Central |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-024-02752-4 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | BMC Medical Informatics and Decision Making |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s12911-024-02752-4 |
| primary_location.id | doi:10.1186/s12911-024-02752-4 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S107516304 |
| primary_location.source.issn | 1472-6947 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1472-6947 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | BMC Medical Informatics and Decision Making |
| primary_location.source.host_organization | https://openalex.org/P4310320256 |
| primary_location.source.host_organization_name | BioMed Central |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-024-02752-4 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | BMC Medical Informatics and Decision Making |
| primary_location.landing_page_url | https://doi.org/10.1186/s12911-024-02752-4 |
| publication_date | 2024-11-11 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2803306216, https://openalex.org/W2920989721, https://openalex.org/W4223888789, https://openalex.org/W2938433516, https://openalex.org/W2071252381, https://openalex.org/W2576382126, https://openalex.org/W4316661572, https://openalex.org/W2983521089, https://openalex.org/W4387449010, https://openalex.org/W1964889409, https://openalex.org/W2757297073, https://openalex.org/W2178246707, https://openalex.org/W3016896281, https://openalex.org/W3045032114, https://openalex.org/W4283396522, https://openalex.org/W4386782628, https://openalex.org/W4386331315, https://openalex.org/W4380680872, https://openalex.org/W6843302958, https://openalex.org/W4379052745, https://openalex.org/W4389608127, https://openalex.org/W2790242325, https://openalex.org/W4225919327, https://openalex.org/W4206017711, https://openalex.org/W2767328471, https://openalex.org/W4206941627, https://openalex.org/W4366988565, https://openalex.org/W4226479883, https://openalex.org/W4298188449 |
| referenced_works_count | 29 |
| abstract_inverted_index.ML | 4 |
| abstract_inverted_index.of | 15 |
| abstract_inverted_index.Our | 0 |
| abstract_inverted_index.can | 10 |
| abstract_inverted_index.the | 13 |
| abstract_inverted_index.PSD. | 16 |
| abstract_inverted_index.best | 11 |
| abstract_inverted_index.risk | 14 |
| abstract_inverted_index.that | 3 |
| abstract_inverted_index.extreme | 7 |
| abstract_inverted_index.models, | 5 |
| abstract_inverted_index.predict | 12 |
| abstract_inverted_index.suggest | 2 |
| abstract_inverted_index.findings | 1 |
| abstract_inverted_index.gradient | 8 |
| abstract_inverted_index.boosting, | 9 |
| abstract_inverted_index.especially | 6 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.83476279 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |