Machining quality prediction of multi-feature parts using integrated multi-source domain dynamic adaptive transfer learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.rcim.2024.102815
Machining quality prediction of multi-feature parts has been a challenging problem because of small dataset and inconsistent quality data distribution with respect to each machining feature. Transfer learning that leverages knowledge of one task and can be repurposed on another task seems a good solution for this purpose. However, traditional transfer learning typically has a single source domain and a target domain, which limits its applications in multi-source scenarios (e.g., multi-feature). To solve this issue, this paper proposes a novel integrated multi-source domain dynamic adaptive transfer learning (IMD-DATL) framework for machining quality prediction of multi-feature part machining systems. Specifically, a domain-sample similarity double matching multi-source domain integration method is designed to construct the integration knowledge transfer from multiple source domains to the target domain. A residual feature extraction network based on sample entropy-dynamic channel double-layer attention structure and a fine-grained transferable feature attention module are designed. These three attentions are used to improve the feature learning ability and the adaptation level to the predicted object in the three dimensions of sample, channel and data feature. Finally, multiple sets of comparative experiments in thin-walled part machining systems confirm the effectiveness and superiority of the proposed method for cross-domain quality prediction. Compared with other traditional transfer learning methods, the MAE, RMSE and Score on average of this method are increased by 5.47 %, 4.59 % and 4.84 %, respectively, compared with other multi-source domain adaptation methods, the MAE, RMSE and Score on average of this method are increased by 7.13 %, 7.37 % and 6.52 %, respectively.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.rcim.2024.102815
- OA Status
- hybrid
- Cited By
- 8
- References
- 57
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400079841
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400079841Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.rcim.2024.102815Digital Object Identifier
- Title
-
Machining quality prediction of multi-feature parts using integrated multi-source domain dynamic adaptive transfer learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-27Full publication date if available
- Authors
-
Pei Wang, Jingshuai Qi, Xun Xu, Sheng YangList of authors in order
- Landing page
-
https://doi.org/10.1016/j.rcim.2024.102815Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.rcim.2024.102815Direct OA link when available
- Concepts
-
Transfer of learning, Computer science, Feature (linguistics), Machining, Artificial intelligence, Feature extraction, Pattern recognition (psychology), Data mining, Domain (mathematical analysis), Machine learning, Engineering, Mathematics, Mechanical engineering, Mathematical analysis, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
57Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400079841 |
|---|---|
| doi | https://doi.org/10.1016/j.rcim.2024.102815 |
| ids.doi | https://doi.org/10.1016/j.rcim.2024.102815 |
| ids.openalex | https://openalex.org/W4400079841 |
| fwci | 5.44833464 |
| type | article |
| title | Machining quality prediction of multi-feature parts using integrated multi-source domain dynamic adaptive transfer learning |
| awards[0].id | https://openalex.org/G1181043941 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 52275507 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G4204673167 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 51805401 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G5575002875 |
| awards[2].funder_id | https://openalex.org/F4320336567 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2019JQ-549 |
| awards[2].funder_display_name | Natural Science Basic Research Program of Shaanxi Province |
| biblio.issue | |
| biblio.volume | 90 |
| biblio.last_page | 102815 |
| biblio.first_page | 102815 |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9854000210762024 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T11606 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9646000266075134 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Infrastructure Maintenance and Monitoring |
| topics[2].id | https://openalex.org/T11451 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9545000195503235 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Machining and Optimization Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320336567 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Basic Research Program of Shaanxi Province |
| is_xpac | False |
| apc_list.value | 4240 |
| apc_list.currency | USD |
| apc_list.value_usd | 4240 |
| apc_paid.value | 4240 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4240 |
| concepts[0].id | https://openalex.org/C150899416 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7177222967147827 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[0].display_name | Transfer of learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6834120154380798 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2776401178 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6710959672927856 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[2].display_name | Feature (linguistics) |
| concepts[3].id | https://openalex.org/C523214423 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5899217128753662 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192047 |
| concepts[3].display_name | Machining |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.546403706073761 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.480699360370636 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4772726893424988 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4367109537124634 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C36503486 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4118993282318115 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[8].display_name | Domain (mathematical analysis) |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40216487646102905 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.21337556838989258 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.11835083365440369 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C78519656 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[12].display_name | Mechanical engineering |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[0].score | 0.7177222967147827 |
| keywords[0].display_name | Transfer of learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6834120154380798 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/feature |
| keywords[2].score | 0.6710959672927856 |
| keywords[2].display_name | Feature (linguistics) |
| keywords[3].id | https://openalex.org/keywords/machining |
| keywords[3].score | 0.5899217128753662 |
| keywords[3].display_name | Machining |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.546403706073761 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.480699360370636 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4772726893424988 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.4367109537124634 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/domain |
| keywords[8].score | 0.4118993282318115 |
| keywords[8].display_name | Domain (mathematical analysis) |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.40216487646102905 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.21337556838989258 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.11835083365440369 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1016/j.rcim.2024.102815 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S118216261 |
| locations[0].source.issn | 0736-5845, 1879-2537 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0736-5845 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Robotics and Computer-Integrated Manufacturing |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Robotics and Computer-Integrated Manufacturing |
| locations[0].landing_page_url | https://doi.org/10.1016/j.rcim.2024.102815 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5042769332 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0229-4909 |
| authorships[0].author.display_name | Pei Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipments, Xidian University, Xi'an 710071, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I149594827 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China |
| authorships[0].institutions[0].id | https://openalex.org/I149594827 |
| authorships[0].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xidian University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pei Wang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China, State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipments, Xidian University, Xi'an 710071, China |
| authorships[1].author.id | https://openalex.org/A5101390137 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jingshuai Qi |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I149594827 |
| authorships[1].affiliations[1].raw_affiliation_string | State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipments, Xidian University, Xi'an 710071, China |
| authorships[1].institutions[0].id | https://openalex.org/I149594827 |
| authorships[1].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xidian University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jingshuai Qi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China, State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipments, Xidian University, Xi'an 710071, China |
| authorships[2].author.id | https://openalex.org/A5100451919 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6294-8153 |
| authorships[2].author.display_name | Xun Xu |
| authorships[2].countries | NZ |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I154130895 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland 1142, New Zealand |
| authorships[2].institutions[0].id | https://openalex.org/I154130895 |
| authorships[2].institutions[0].ror | https://ror.org/03b94tp07 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I154130895 |
| authorships[2].institutions[0].country_code | NZ |
| authorships[2].institutions[0].display_name | University of Auckland |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xun Xu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland 1142, New Zealand |
| authorships[3].author.id | https://openalex.org/A5056875120 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6286-2779 |
| authorships[3].author.display_name | Sheng Yang |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I79817857 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Engineering, University of Guelph, Guelph, ON, Canada, N1G 2W1 |
| authorships[3].institutions[0].id | https://openalex.org/I79817857 |
| authorships[3].institutions[0].ror | https://ror.org/01r7awg59 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I79817857 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | University of Guelph |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Sheng Yang |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | School of Engineering, University of Guelph, Guelph, ON, Canada, N1G 2W1 |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.rcim.2024.102815 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Machining quality prediction of multi-feature parts using integrated multi-source domain dynamic adaptive transfer learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9854000210762024 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2803338891, https://openalex.org/W2043267898, https://openalex.org/W2112229447, https://openalex.org/W2036155574, https://openalex.org/W2063119839, https://openalex.org/W2053955898, https://openalex.org/W2975110486, https://openalex.org/W2355268135, https://openalex.org/W2369113923, https://openalex.org/W2352173300 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.rcim.2024.102815 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S118216261 |
| best_oa_location.source.issn | 0736-5845, 1879-2537 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0736-5845 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Robotics and Computer-Integrated Manufacturing |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Robotics and Computer-Integrated Manufacturing |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.rcim.2024.102815 |
| primary_location.id | doi:10.1016/j.rcim.2024.102815 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S118216261 |
| primary_location.source.issn | 0736-5845, 1879-2537 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0736-5845 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Robotics and Computer-Integrated Manufacturing |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Robotics and Computer-Integrated Manufacturing |
| primary_location.landing_page_url | https://doi.org/10.1016/j.rcim.2024.102815 |
| publication_date | 2024-06-27 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3141868560, https://openalex.org/W4221071325, https://openalex.org/W4377143182, https://openalex.org/W6809676226, https://openalex.org/W4384788683, https://openalex.org/W2976933962, https://openalex.org/W6637618735, https://openalex.org/W4281784047, https://openalex.org/W4307488532, https://openalex.org/W2940568479, https://openalex.org/W3165137932, https://openalex.org/W3004523997, https://openalex.org/W3210689982, https://openalex.org/W6850996704, https://openalex.org/W3146674346, https://openalex.org/W4353056580, https://openalex.org/W4322754779, https://openalex.org/W4321071998, https://openalex.org/W4304777638, https://openalex.org/W2889945482, https://openalex.org/W6789285129, https://openalex.org/W4368347382, https://openalex.org/W4294203742, https://openalex.org/W4293259034, https://openalex.org/W3208880951, https://openalex.org/W4213075002, https://openalex.org/W3046682702, https://openalex.org/W3161042962, https://openalex.org/W3129592173, https://openalex.org/W3210375097, https://openalex.org/W2904706552, https://openalex.org/W6760770551, https://openalex.org/W4206394499, https://openalex.org/W3196754565, https://openalex.org/W6853285519, https://openalex.org/W2966800510, https://openalex.org/W3095911980, https://openalex.org/W2802314367, https://openalex.org/W4307911024, https://openalex.org/W2067211764, https://openalex.org/W4313450972, https://openalex.org/W6756577627, https://openalex.org/W4307567853, https://openalex.org/W6840214395, https://openalex.org/W3150319634, https://openalex.org/W4295950763, https://openalex.org/W3092500685, https://openalex.org/W4384010445, https://openalex.org/W4249009392, https://openalex.org/W4253632102, https://openalex.org/W4381856792, https://openalex.org/W2756202949, https://openalex.org/W2187089797, https://openalex.org/W3124219615, https://openalex.org/W4220902946, https://openalex.org/W4286696412, https://openalex.org/W4361246170 |
| referenced_works_count | 57 |
| abstract_inverted_index.% | 222, 250 |
| abstract_inverted_index.A | 124 |
| abstract_inverted_index.a | 8, 42, 54, 59, 78, 99, 138 |
| abstract_inverted_index.%, | 220, 225, 248, 253 |
| abstract_inverted_index.To | 71 |
| abstract_inverted_index.be | 36 |
| abstract_inverted_index.by | 218, 246 |
| abstract_inverted_index.in | 66, 165, 181 |
| abstract_inverted_index.is | 108 |
| abstract_inverted_index.of | 3, 12, 31, 93, 169, 178, 191, 213, 241 |
| abstract_inverted_index.on | 38, 130, 211, 239 |
| abstract_inverted_index.to | 22, 110, 120, 151, 161 |
| abstract_inverted_index.and | 15, 34, 58, 137, 157, 172, 189, 209, 223, 237, 251 |
| abstract_inverted_index.are | 144, 149, 216, 244 |
| abstract_inverted_index.can | 35 |
| abstract_inverted_index.for | 45, 89, 195 |
| abstract_inverted_index.has | 6, 53 |
| abstract_inverted_index.its | 64 |
| abstract_inverted_index.one | 32 |
| abstract_inverted_index.the | 112, 121, 153, 158, 162, 166, 187, 192, 206, 234 |
| abstract_inverted_index.4.59 | 221 |
| abstract_inverted_index.4.84 | 224 |
| abstract_inverted_index.5.47 | 219 |
| abstract_inverted_index.6.52 | 252 |
| abstract_inverted_index.7.13 | 247 |
| abstract_inverted_index.7.37 | 249 |
| abstract_inverted_index.MAE, | 207, 235 |
| abstract_inverted_index.RMSE | 208, 236 |
| abstract_inverted_index.been | 7 |
| abstract_inverted_index.data | 18, 173 |
| abstract_inverted_index.each | 23 |
| abstract_inverted_index.from | 116 |
| abstract_inverted_index.good | 43 |
| abstract_inverted_index.part | 95, 183 |
| abstract_inverted_index.sets | 177 |
| abstract_inverted_index.task | 33, 40 |
| abstract_inverted_index.that | 28 |
| abstract_inverted_index.this | 46, 73, 75, 214, 242 |
| abstract_inverted_index.used | 150 |
| abstract_inverted_index.with | 20, 200, 228 |
| abstract_inverted_index.Score | 210, 238 |
| abstract_inverted_index.These | 146 |
| abstract_inverted_index.based | 129 |
| abstract_inverted_index.level | 160 |
| abstract_inverted_index.novel | 79 |
| abstract_inverted_index.other | 201, 229 |
| abstract_inverted_index.paper | 76 |
| abstract_inverted_index.parts | 5 |
| abstract_inverted_index.seems | 41 |
| abstract_inverted_index.small | 13 |
| abstract_inverted_index.solve | 72 |
| abstract_inverted_index.three | 147, 167 |
| abstract_inverted_index.which | 62 |
| abstract_inverted_index.(e.g., | 69 |
| abstract_inverted_index.domain | 57, 82, 105, 231 |
| abstract_inverted_index.double | 102 |
| abstract_inverted_index.issue, | 74 |
| abstract_inverted_index.limits | 63 |
| abstract_inverted_index.method | 107, 194, 215, 243 |
| abstract_inverted_index.module | 143 |
| abstract_inverted_index.object | 164 |
| abstract_inverted_index.sample | 131 |
| abstract_inverted_index.single | 55 |
| abstract_inverted_index.source | 56, 118 |
| abstract_inverted_index.target | 60, 122 |
| abstract_inverted_index.ability | 156 |
| abstract_inverted_index.another | 39 |
| abstract_inverted_index.average | 212, 240 |
| abstract_inverted_index.because | 11 |
| abstract_inverted_index.channel | 133, 171 |
| abstract_inverted_index.confirm | 186 |
| abstract_inverted_index.dataset | 14 |
| abstract_inverted_index.domain, | 61 |
| abstract_inverted_index.domain. | 123 |
| abstract_inverted_index.domains | 119 |
| abstract_inverted_index.dynamic | 83 |
| abstract_inverted_index.feature | 126, 141, 154 |
| abstract_inverted_index.improve | 152 |
| abstract_inverted_index.network | 128 |
| abstract_inverted_index.problem | 10 |
| abstract_inverted_index.quality | 1, 17, 91, 197 |
| abstract_inverted_index.respect | 21 |
| abstract_inverted_index.sample, | 170 |
| abstract_inverted_index.systems | 185 |
| abstract_inverted_index.Compared | 199 |
| abstract_inverted_index.Finally, | 175 |
| abstract_inverted_index.However, | 48 |
| abstract_inverted_index.Transfer | 26 |
| abstract_inverted_index.adaptive | 84 |
| abstract_inverted_index.compared | 227 |
| abstract_inverted_index.designed | 109 |
| abstract_inverted_index.feature. | 25, 174 |
| abstract_inverted_index.learning | 27, 51, 86, 155, 204 |
| abstract_inverted_index.matching | 103 |
| abstract_inverted_index.methods, | 205, 233 |
| abstract_inverted_index.multiple | 117, 176 |
| abstract_inverted_index.proposed | 193 |
| abstract_inverted_index.proposes | 77 |
| abstract_inverted_index.purpose. | 47 |
| abstract_inverted_index.residual | 125 |
| abstract_inverted_index.solution | 44 |
| abstract_inverted_index.systems. | 97 |
| abstract_inverted_index.transfer | 50, 85, 115, 203 |
| abstract_inverted_index.Machining | 0 |
| abstract_inverted_index.attention | 135, 142 |
| abstract_inverted_index.construct | 111 |
| abstract_inverted_index.designed. | 145 |
| abstract_inverted_index.framework | 88 |
| abstract_inverted_index.increased | 217, 245 |
| abstract_inverted_index.knowledge | 30, 114 |
| abstract_inverted_index.leverages | 29 |
| abstract_inverted_index.machining | 24, 90, 96, 184 |
| abstract_inverted_index.predicted | 163 |
| abstract_inverted_index.scenarios | 68 |
| abstract_inverted_index.structure | 136 |
| abstract_inverted_index.typically | 52 |
| abstract_inverted_index.(IMD-DATL) | 87 |
| abstract_inverted_index.adaptation | 159, 232 |
| abstract_inverted_index.attentions | 148 |
| abstract_inverted_index.dimensions | 168 |
| abstract_inverted_index.extraction | 127 |
| abstract_inverted_index.integrated | 80 |
| abstract_inverted_index.prediction | 2, 92 |
| abstract_inverted_index.repurposed | 37 |
| abstract_inverted_index.similarity | 101 |
| abstract_inverted_index.challenging | 9 |
| abstract_inverted_index.comparative | 179 |
| abstract_inverted_index.experiments | 180 |
| abstract_inverted_index.integration | 106, 113 |
| abstract_inverted_index.prediction. | 198 |
| abstract_inverted_index.superiority | 190 |
| abstract_inverted_index.thin-walled | 182 |
| abstract_inverted_index.traditional | 49, 202 |
| abstract_inverted_index.applications | 65 |
| abstract_inverted_index.cross-domain | 196 |
| abstract_inverted_index.distribution | 19 |
| abstract_inverted_index.double-layer | 134 |
| abstract_inverted_index.fine-grained | 139 |
| abstract_inverted_index.inconsistent | 16 |
| abstract_inverted_index.multi-source | 67, 81, 104, 230 |
| abstract_inverted_index.transferable | 140 |
| abstract_inverted_index.Specifically, | 98 |
| abstract_inverted_index.domain-sample | 100 |
| abstract_inverted_index.effectiveness | 188 |
| abstract_inverted_index.multi-feature | 4, 94 |
| abstract_inverted_index.respectively, | 226 |
| abstract_inverted_index.respectively. | 254 |
| abstract_inverted_index.entropy-dynamic | 132 |
| abstract_inverted_index.multi-feature). | 70 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5042769332, https://openalex.org/A5056875120 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I149594827, https://openalex.org/I79817857 |
| citation_normalized_percentile.value | 0.93365796 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |