MADE: Multicurvature Adaptive Embedding for Temporal Knowledge Graph Completion Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/tcyb.2024.3392957
Temporal knowledge graphs (TKGs) are receiving increased attention due to their time-dependent properties and the evolving nature of knowledge over time. TKGs typically contain complex geometric structures, such as hierarchical, ring, and chain structures, which can often be mixed together. However, embedding TKGs into Euclidean space, as is typically done with TKG completion (TKGC) models, presents a challenge when dealing with high-dimensional nonlinear data and complex geometric structures. To address this issue, we propose a novel TKGC model called multicurvature adaptive embedding (MADE). MADE models TKGs in multicurvature spaces, including flat Euclidean space (zero curvature), hyperbolic space (negative curvature), and hyperspherical space (positive curvature), to handle multiple geometric structures. We assign different weights to different curvature spaces in a data-driven manner to strengthen the ideal curvature spaces for modeling and weaken the inappropriate ones. Additionally, we introduce the quadruplet distributor (QD) to assist the information interaction in each geometric space. Ultimately, we develop an innovative temporal regularization to enhance the smoothness of timestamp embeddings by strengthening the correlation of neighboring timestamps. Experimental results show that MADE outperforms the existing state-of-the-art TKGC models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tcyb.2024.3392957
- OA Status
- green
- Cited By
- 11
- References
- 65
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4398188136
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4398188136Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tcyb.2024.3392957Digital Object Identifier
- Title
-
MADE: Multicurvature Adaptive Embedding for Temporal Knowledge Graph CompletionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-21Full publication date if available
- Authors
-
Jiapu Wang, Boyue Wang, Junbin Gao, Shirui Pan, Tengfei Liu, Baocai Yin, Wen GaoList of authors in order
- Landing page
-
https://doi.org/10.1109/tcyb.2024.3392957Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/10072/431399Direct OA link when available
- Concepts
-
Embedding, Curvature, Euclidean space, Euclidean geometry, Computer science, Timestamp, Hyperbolic space, Graph, Theoretical computer science, Mathematics, Algorithm, Artificial intelligence, Geometry, Pure mathematics, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
65Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4398188136 |
|---|---|
| doi | https://doi.org/10.1109/tcyb.2024.3392957 |
| ids.doi | https://doi.org/10.1109/tcyb.2024.3392957 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38771679 |
| ids.openalex | https://openalex.org/W4398188136 |
| fwci | 7.02656404 |
| type | article |
| title | MADE: Multicurvature Adaptive Embedding for Temporal Knowledge Graph Completion |
| awards[0].id | https://openalex.org/G6212863906 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | U21B2038 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G1098515591 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 62272015 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G6152166824 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 92370102 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 10 |
| biblio.volume | 54 |
| biblio.last_page | 5831 |
| biblio.first_page | 5818 |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9976000189781189 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9796000123023987 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9713000059127808 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41608201 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7358880043029785 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[0].display_name | Embedding |
| concepts[1].id | https://openalex.org/C195065555 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6845470666885376 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q214881 |
| concepts[1].display_name | Curvature |
| concepts[2].id | https://openalex.org/C186450821 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5542148351669312 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17295 |
| concepts[2].display_name | Euclidean space |
| concepts[3].id | https://openalex.org/C129782007 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5471829175949097 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q162886 |
| concepts[3].display_name | Euclidean geometry |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5089571475982666 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C113954288 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4939647316932678 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q186885 |
| concepts[5].display_name | Timestamp |
| concepts[6].id | https://openalex.org/C83677898 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4573911428451538 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1878538 |
| concepts[6].display_name | Hyperbolic space |
| concepts[7].id | https://openalex.org/C132525143 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4509987533092499 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[7].display_name | Graph |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.44212692975997925 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.4094068706035614 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3278088867664337 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.29310762882232666 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C2524010 |
| concepts[12].level | 1 |
| concepts[12].score | 0.16430646181106567 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[12].display_name | Geometry |
| concepts[13].id | https://openalex.org/C202444582 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1634070873260498 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[13].display_name | Pure mathematics |
| concepts[14].id | https://openalex.org/C38652104 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[14].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/embedding |
| keywords[0].score | 0.7358880043029785 |
| keywords[0].display_name | Embedding |
| keywords[1].id | https://openalex.org/keywords/curvature |
| keywords[1].score | 0.6845470666885376 |
| keywords[1].display_name | Curvature |
| keywords[2].id | https://openalex.org/keywords/euclidean-space |
| keywords[2].score | 0.5542148351669312 |
| keywords[2].display_name | Euclidean space |
| keywords[3].id | https://openalex.org/keywords/euclidean-geometry |
| keywords[3].score | 0.5471829175949097 |
| keywords[3].display_name | Euclidean geometry |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5089571475982666 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/timestamp |
| keywords[5].score | 0.4939647316932678 |
| keywords[5].display_name | Timestamp |
| keywords[6].id | https://openalex.org/keywords/hyperbolic-space |
| keywords[6].score | 0.4573911428451538 |
| keywords[6].display_name | Hyperbolic space |
| keywords[7].id | https://openalex.org/keywords/graph |
| keywords[7].score | 0.4509987533092499 |
| keywords[7].display_name | Graph |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.44212692975997925 |
| keywords[8].display_name | Theoretical computer science |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.4094068706035614 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.3278088867664337 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.29310762882232666 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/geometry |
| keywords[12].score | 0.16430646181106567 |
| keywords[12].display_name | Geometry |
| keywords[13].id | https://openalex.org/keywords/pure-mathematics |
| keywords[13].score | 0.1634070873260498 |
| keywords[13].display_name | Pure mathematics |
| language | en |
| locations[0].id | doi:10.1109/tcyb.2024.3392957 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4210191041 |
| locations[0].source.issn | 2168-2267, 2168-2275 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2168-2267 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Cybernetics |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Cybernetics |
| locations[0].landing_page_url | https://doi.org/10.1109/tcyb.2024.3392957 |
| locations[1].id | pmid:38771679 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on cybernetics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38771679 |
| locations[2].id | pmh:oai:research-repository.griffith.edu.au:10072/431399 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402548 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Griffith Research Online (Griffith University, Queensland, Australia) |
| locations[2].source.host_organization | https://openalex.org/I11701301 |
| locations[2].source.host_organization_name | Griffith University |
| locations[2].source.host_organization_lineage | https://openalex.org/I11701301 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Journal article |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://hdl.handle.net/10072/431399 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5010757894 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7639-5289 |
| authorships[0].author.display_name | Jiapu Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[0].affiliations[0].raw_affiliation_string | Beijing Artificial Intelligence Institute, Faculty of Information Technology, Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I37796252 |
| authorships[0].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiapu Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Artificial Intelligence Institute, Faculty of Information Technology, Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5091545406 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2677-8342 |
| authorships[1].author.display_name | Boyue Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[1].affiliations[0].raw_affiliation_string | Beijing Artificial Intelligence Institute, Faculty of Information Technology, Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I37796252 |
| authorships[1].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Boyue Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Beijing Artificial Intelligence Institute, Faculty of Information Technology, Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5015817857 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9803-0256 |
| authorships[2].author.display_name | Junbin Gao |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I129604602 |
| authorships[2].affiliations[0].raw_affiliation_string | Discipline of Business Analytics, The University of Sydney Business School, The University of Sydney, Sydney, NSW, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I129604602 |
| authorships[2].institutions[0].ror | https://ror.org/0384j8v12 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I129604602 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | The University of Sydney |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Junbin Gao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Discipline of Business Analytics, The University of Sydney Business School, The University of Sydney, Sydney, NSW, Australia |
| authorships[3].author.id | https://openalex.org/A5008056593 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0794-527X |
| authorships[3].author.display_name | Shirui Pan |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I11701301 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Information and Communication Technology, Griffith University, Southport, QLD, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I11701301 |
| authorships[3].institutions[0].ror | https://ror.org/02sc3r913 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I11701301 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | Griffith University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shirui Pan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Information and Communication Technology, Griffith University, Southport, QLD, Australia |
| authorships[4].author.id | https://openalex.org/A5100726340 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2739-5220 |
| authorships[4].author.display_name | Tengfei Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[4].affiliations[0].raw_affiliation_string | Beijing Artificial Intelligence Institute, Faculty of Information Technology, Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing, China |
| authorships[4].institutions[0].id | https://openalex.org/I37796252 |
| authorships[4].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tengfei Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Beijing Artificial Intelligence Institute, Faculty of Information Technology, Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing, China |
| authorships[5].author.id | https://openalex.org/A5020527092 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3121-1823 |
| authorships[5].author.display_name | Baocai Yin |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[5].affiliations[0].raw_affiliation_string | Beijing Artificial Intelligence Institute, Faculty of Information Technology, Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing, China |
| authorships[5].institutions[0].id | https://openalex.org/I37796252 |
| authorships[5].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Beijing University of Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Baocai Yin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Beijing Artificial Intelligence Institute, Faculty of Information Technology, Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing, China |
| authorships[6].author.id | https://openalex.org/A5018478553 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8070-802X |
| authorships[6].author.display_name | Wen Gao |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[6].affiliations[0].raw_affiliation_string | Institute of Digital Media, Peking University, Beijing, China |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I20231570 |
| authorships[6].affiliations[1].raw_affiliation_string | School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, China |
| authorships[6].institutions[0].id | https://openalex.org/I20231570 |
| authorships[6].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Peking University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Wen Gao |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Institute of Digital Media, Peking University, Beijing, China, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hdl.handle.net/10072/431399 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MADE: Multicurvature Adaptive Embedding for Temporal Knowledge Graph Completion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9976000189781189 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W4238233526, https://openalex.org/W2781495912, https://openalex.org/W2610298398, https://openalex.org/W4281992692, https://openalex.org/W2023081456, https://openalex.org/W2145396827, https://openalex.org/W2279239548, https://openalex.org/W4294294347, https://openalex.org/W63976795, https://openalex.org/W2404658402 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:research-repository.griffith.edu.au:10072/431399 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402548 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Griffith Research Online (Griffith University, Queensland, Australia) |
| best_oa_location.source.host_organization | https://openalex.org/I11701301 |
| best_oa_location.source.host_organization_name | Griffith University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I11701301 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Journal article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://hdl.handle.net/10072/431399 |
| primary_location.id | doi:10.1109/tcyb.2024.3392957 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4210191041 |
| primary_location.source.issn | 2168-2267, 2168-2275 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2168-2267 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Cybernetics |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Cybernetics |
| primary_location.landing_page_url | https://doi.org/10.1109/tcyb.2024.3392957 |
| publication_date | 2024-05-21 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2000411838, https://openalex.org/W4313004671, https://openalex.org/W1507806757, https://openalex.org/W6867907617, https://openalex.org/W4377971427, https://openalex.org/W2797520557, https://openalex.org/W1999418377, https://openalex.org/W2184957013, https://openalex.org/W3003265726, https://openalex.org/W4368232601, https://openalex.org/W6857420988, https://openalex.org/W6855912908, https://openalex.org/W6678830454, https://openalex.org/W4252707176, https://openalex.org/W4225157436, https://openalex.org/W6853938813, https://openalex.org/W6780896692, https://openalex.org/W6631964550, https://openalex.org/W2914592219, https://openalex.org/W6718112784, https://openalex.org/W6747772516, https://openalex.org/W4388486515, https://openalex.org/W2728059831, https://openalex.org/W2604314403, https://openalex.org/W6857928729, https://openalex.org/W6858141978, https://openalex.org/W3038934320, https://openalex.org/W6855758150, https://openalex.org/W4390692489, https://openalex.org/W4396722842, https://openalex.org/W6857005926, https://openalex.org/W7039770284, https://openalex.org/W3175405178, https://openalex.org/W3167316272, https://openalex.org/W3199561489, https://openalex.org/W2798864014, https://openalex.org/W2889782235, https://openalex.org/W3100254008, https://openalex.org/W3114354807, https://openalex.org/W4289524991, https://openalex.org/W2890410208, https://openalex.org/W3115318530, https://openalex.org/W6771929373, https://openalex.org/W4388451996, https://openalex.org/W2998528434, https://openalex.org/W3106844781, https://openalex.org/W4213337779, https://openalex.org/W4365794676, https://openalex.org/W4385572097, https://openalex.org/W3035134435, https://openalex.org/W3129998940, https://openalex.org/W4283688275, https://openalex.org/W4365794597, https://openalex.org/W6751264767, https://openalex.org/W6751693566, https://openalex.org/W6779408555, https://openalex.org/W2963150162, https://openalex.org/W2295739661, https://openalex.org/W2951653466, https://openalex.org/W4283699163, https://openalex.org/W6622957738, https://openalex.org/W4386556710, https://openalex.org/W3103296573, https://openalex.org/W4385645262, https://openalex.org/W4387560121 |
| referenced_works_count | 65 |
| abstract_inverted_index.a | 56, 74, 118 |
| abstract_inverted_index.To | 68 |
| abstract_inverted_index.We | 109 |
| abstract_inverted_index.an | 153 |
| abstract_inverted_index.as | 28, 46 |
| abstract_inverted_index.be | 37 |
| abstract_inverted_index.by | 164 |
| abstract_inverted_index.in | 86, 117, 146 |
| abstract_inverted_index.is | 47 |
| abstract_inverted_index.of | 17, 161, 168 |
| abstract_inverted_index.to | 9, 104, 113, 121, 141, 157 |
| abstract_inverted_index.we | 72, 135, 151 |
| abstract_inverted_index.TKG | 51 |
| abstract_inverted_index.and | 13, 31, 64, 99, 129 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.can | 35 |
| abstract_inverted_index.due | 8 |
| abstract_inverted_index.for | 127 |
| abstract_inverted_index.the | 14, 123, 131, 137, 143, 159, 166, 177 |
| abstract_inverted_index.(QD) | 140 |
| abstract_inverted_index.MADE | 83, 175 |
| abstract_inverted_index.TKGC | 76, 180 |
| abstract_inverted_index.TKGs | 21, 42, 85 |
| abstract_inverted_index.data | 63 |
| abstract_inverted_index.done | 49 |
| abstract_inverted_index.each | 147 |
| abstract_inverted_index.flat | 90 |
| abstract_inverted_index.into | 43 |
| abstract_inverted_index.over | 19 |
| abstract_inverted_index.show | 173 |
| abstract_inverted_index.such | 27 |
| abstract_inverted_index.that | 174 |
| abstract_inverted_index.this | 70 |
| abstract_inverted_index.when | 58 |
| abstract_inverted_index.with | 50, 60 |
| abstract_inverted_index.(zero | 93 |
| abstract_inverted_index.chain | 32 |
| abstract_inverted_index.ideal | 124 |
| abstract_inverted_index.mixed | 38 |
| abstract_inverted_index.model | 77 |
| abstract_inverted_index.novel | 75 |
| abstract_inverted_index.often | 36 |
| abstract_inverted_index.ones. | 133 |
| abstract_inverted_index.ring, | 30 |
| abstract_inverted_index.space | 92, 96, 101 |
| abstract_inverted_index.their | 10 |
| abstract_inverted_index.time. | 20 |
| abstract_inverted_index.which | 34 |
| abstract_inverted_index.(TKGC) | 53 |
| abstract_inverted_index.(TKGs) | 3 |
| abstract_inverted_index.assign | 110 |
| abstract_inverted_index.assist | 142 |
| abstract_inverted_index.called | 78 |
| abstract_inverted_index.graphs | 2 |
| abstract_inverted_index.handle | 105 |
| abstract_inverted_index.issue, | 71 |
| abstract_inverted_index.manner | 120 |
| abstract_inverted_index.models | 84 |
| abstract_inverted_index.nature | 16 |
| abstract_inverted_index.space, | 45 |
| abstract_inverted_index.space. | 149 |
| abstract_inverted_index.spaces | 116, 126 |
| abstract_inverted_index.weaken | 130 |
| abstract_inverted_index.(MADE). | 82 |
| abstract_inverted_index.address | 69 |
| abstract_inverted_index.complex | 24, 65 |
| abstract_inverted_index.contain | 23 |
| abstract_inverted_index.dealing | 59 |
| abstract_inverted_index.develop | 152 |
| abstract_inverted_index.enhance | 158 |
| abstract_inverted_index.models, | 54 |
| abstract_inverted_index.models. | 181 |
| abstract_inverted_index.propose | 73 |
| abstract_inverted_index.results | 172 |
| abstract_inverted_index.spaces, | 88 |
| abstract_inverted_index.weights | 112 |
| abstract_inverted_index.However, | 40 |
| abstract_inverted_index.Temporal | 0 |
| abstract_inverted_index.adaptive | 80 |
| abstract_inverted_index.evolving | 15 |
| abstract_inverted_index.existing | 178 |
| abstract_inverted_index.modeling | 128 |
| abstract_inverted_index.multiple | 106 |
| abstract_inverted_index.presents | 55 |
| abstract_inverted_index.temporal | 155 |
| abstract_inverted_index.(negative | 97 |
| abstract_inverted_index.(positive | 102 |
| abstract_inverted_index.Euclidean | 44, 91 |
| abstract_inverted_index.attention | 7 |
| abstract_inverted_index.challenge | 57 |
| abstract_inverted_index.curvature | 115, 125 |
| abstract_inverted_index.different | 111, 114 |
| abstract_inverted_index.embedding | 41, 81 |
| abstract_inverted_index.geometric | 25, 66, 107, 148 |
| abstract_inverted_index.including | 89 |
| abstract_inverted_index.increased | 6 |
| abstract_inverted_index.introduce | 136 |
| abstract_inverted_index.knowledge | 1, 18 |
| abstract_inverted_index.nonlinear | 62 |
| abstract_inverted_index.receiving | 5 |
| abstract_inverted_index.timestamp | 162 |
| abstract_inverted_index.together. | 39 |
| abstract_inverted_index.typically | 22, 48 |
| abstract_inverted_index.completion | 52 |
| abstract_inverted_index.embeddings | 163 |
| abstract_inverted_index.hyperbolic | 95 |
| abstract_inverted_index.innovative | 154 |
| abstract_inverted_index.properties | 12 |
| abstract_inverted_index.quadruplet | 138 |
| abstract_inverted_index.smoothness | 160 |
| abstract_inverted_index.strengthen | 122 |
| abstract_inverted_index.Ultimately, | 150 |
| abstract_inverted_index.correlation | 167 |
| abstract_inverted_index.curvature), | 94, 98, 103 |
| abstract_inverted_index.data-driven | 119 |
| abstract_inverted_index.distributor | 139 |
| abstract_inverted_index.information | 144 |
| abstract_inverted_index.interaction | 145 |
| abstract_inverted_index.neighboring | 169 |
| abstract_inverted_index.outperforms | 176 |
| abstract_inverted_index.structures, | 26, 33 |
| abstract_inverted_index.structures. | 67, 108 |
| abstract_inverted_index.timestamps. | 170 |
| abstract_inverted_index.Experimental | 171 |
| abstract_inverted_index.Additionally, | 134 |
| abstract_inverted_index.hierarchical, | 29 |
| abstract_inverted_index.inappropriate | 132 |
| abstract_inverted_index.strengthening | 165 |
| abstract_inverted_index.hyperspherical | 100 |
| abstract_inverted_index.multicurvature | 79, 87 |
| abstract_inverted_index.regularization | 156 |
| abstract_inverted_index.time-dependent | 11 |
| abstract_inverted_index.high-dimensional | 61 |
| abstract_inverted_index.state-of-the-art | 179 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.95847377 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |