MADN: Multi-Attention With Diffusion Network for Scene Text Image Super-Resolution Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3597298
Scene Text Image Super-Resolution (STISR) enhances the recognition accuracy of degraded textual imagery that requires fine-grained character reconstruction. Despite incorporating text-specific prior knowledge, existing methods suffer from suboptimal feature discrimination and inadequate sequential dependency modeling, resulting in information dilution and spatial discontinuity that compromise textual legibility. In this paper, we propose a Multi-Attention with Diffusion Network (MADN), a hierarchical attention framework that addresses these limitations through dual-domain feature refinement. Our Attention-Guided Feature Extraction (AGFE) module implements Channel Attention (CA) for adaptive feature recalibration and Spatial Attention (SA) for region-specific localization, enabling selective amplification of text-critical features while suppressing background interference. We further introduce Multi-Attention Residual Blocks (MARB), which integrate Bidirectional Long Short-Term Memory (BLSTM) networks for modeling sequential dependencies and refining multi-dimensional features. This multi-attention-based model acquires inter-character contextual relations while preserving the fine-grained textual structure. MADN adopts a hybrid dual-branch architecture, comprising a Super-Resolution (SR) branch equipped with AGFE and cascaded MARB modules to process low-resolution inputs and a Guidance Branch, along with a Text Prior Enhancement Module (TPEM) for forward diffusion and text feature generation. The Feature Fusion Module (FFM) fuses multi-scale features of two branches, enabling information exchange across the branches and refinement of features through diffusion mechanisms. Extensive experiments on the TextZoom dataset demonstrate state-of-the-art performance with significant improvements in Recognition Accuracy, PSNR, and SSIM. The code for MADN is available at: https://github.com/cuee-mdap/madn-net
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3597298
- OA Status
- gold
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413213165
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413213165Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3597298Digital Object Identifier
- Title
-
MADN: Multi-Attention With Diffusion Network for Scene Text Image Super-ResolutionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Amir Hajian, Em Tithnorakneath, Watchara Ruangsang, Supavadee AramvithList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3597298Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3597298Direct OA link when available
- Concepts
-
Computer science, Image resolution, Computer vision, Artificial intelligence, Diffusion, Image (mathematics), Resolution (logic), Physics, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413213165 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3597298 |
| ids.doi | https://doi.org/10.1109/access.2025.3597298 |
| ids.openalex | https://openalex.org/W4413213165 |
| fwci | 0.0 |
| type | article |
| title | MADN: Multi-Attention With Diffusion Network for Scene Text Image Super-Resolution |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 143249 |
| biblio.first_page | 143233 |
| topics[0].id | https://openalex.org/T11105 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9901999831199646 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image Processing Techniques |
| topics[1].id | https://openalex.org/T13114 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9635000228881836 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Image Processing Techniques and Applications |
| topics[2].id | https://openalex.org/T10688 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9182999730110168 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Signal Denoising Methods |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7395817041397095 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C205372480 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5490678548812866 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q210521 |
| concepts[1].display_name | Image resolution |
| concepts[2].id | https://openalex.org/C31972630 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5104938745498657 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[2].display_name | Computer vision |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.49169641733169556 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C69357855 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4907141923904419 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[4].display_name | Diffusion |
| concepts[5].id | https://openalex.org/C115961682 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4754216969013214 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[5].display_name | Image (mathematics) |
| concepts[6].id | https://openalex.org/C138268822 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46310538053512573 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1051925 |
| concepts[6].display_name | Resolution (logic) |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.07472836971282959 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C97355855 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[8].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7395817041397095 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/image-resolution |
| keywords[1].score | 0.5490678548812866 |
| keywords[1].display_name | Image resolution |
| keywords[2].id | https://openalex.org/keywords/computer-vision |
| keywords[2].score | 0.5104938745498657 |
| keywords[2].display_name | Computer vision |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.49169641733169556 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/diffusion |
| keywords[4].score | 0.4907141923904419 |
| keywords[4].display_name | Diffusion |
| keywords[5].id | https://openalex.org/keywords/image |
| keywords[5].score | 0.4754216969013214 |
| keywords[5].display_name | Image (mathematics) |
| keywords[6].id | https://openalex.org/keywords/resolution |
| keywords[6].score | 0.46310538053512573 |
| keywords[6].display_name | Resolution (logic) |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.07472836971282959 |
| keywords[7].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3597298 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3597298 |
| locations[1].id | pmh:oai:doaj.org/article:649542f525a244c1a08f74a3a9222815 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 143233-143249 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/649542f525a244c1a08f74a3a9222815 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5103324528 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-2007-8723 |
| authorships[0].author.display_name | Amir Hajian |
| authorships[0].countries | TH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I158708052 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand |
| authorships[0].institutions[0].id | https://openalex.org/I158708052 |
| authorships[0].institutions[0].ror | https://ror.org/028wp3y58 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I158708052 |
| authorships[0].institutions[0].country_code | TH |
| authorships[0].institutions[0].display_name | Chulalongkorn University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Amir Hajian |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand |
| authorships[1].author.id | https://openalex.org/A5119305953 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Em Tithnorakneath |
| authorships[1].countries | TH |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I158708052 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand |
| authorships[1].institutions[0].id | https://openalex.org/I158708052 |
| authorships[1].institutions[0].ror | https://ror.org/028wp3y58 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I158708052 |
| authorships[1].institutions[0].country_code | TH |
| authorships[1].institutions[0].display_name | Chulalongkorn University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Em Tithnorakneath |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand |
| authorships[2].author.id | https://openalex.org/A5066340947 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Watchara Ruangsang |
| authorships[2].countries | TH |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I158708052 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand |
| authorships[2].institutions[0].id | https://openalex.org/I158708052 |
| authorships[2].institutions[0].ror | https://ror.org/028wp3y58 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I158708052 |
| authorships[2].institutions[0].country_code | TH |
| authorships[2].institutions[0].display_name | Chulalongkorn University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Watchara Ruangsang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand |
| authorships[3].author.id | https://openalex.org/A5069698375 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9840-3171 |
| authorships[3].author.display_name | Supavadee Aramvith |
| authorships[3].countries | TH |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I158708052 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Faculty of Engineering, Multimedia Data Analytics and Processing Research Unit, Chulalongkorn University, Bangkok, Thailand |
| authorships[3].institutions[0].id | https://openalex.org/I158708052 |
| authorships[3].institutions[0].ror | https://ror.org/028wp3y58 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I158708052 |
| authorships[3].institutions[0].country_code | TH |
| authorships[3].institutions[0].display_name | Chulalongkorn University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Supavadee Aramvith |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrical Engineering, Faculty of Engineering, Multimedia Data Analytics and Processing Research Unit, Chulalongkorn University, Bangkok, Thailand |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3597298 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MADN: Multi-Attention With Diffusion Network for Scene Text Image Super-Resolution |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11105 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9901999831199646 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image Processing Techniques |
| related_works | https://openalex.org/W2362774332, https://openalex.org/W4249245269, https://openalex.org/W2765548132, https://openalex.org/W2025681766, https://openalex.org/W2542402767, https://openalex.org/W3023086044, https://openalex.org/W2294441925, https://openalex.org/W2142226356, https://openalex.org/W2056165575, https://openalex.org/W3210000161 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3597298 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3597298 |
| primary_location.id | doi:10.1109/access.2025.3597298 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3597298 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3083321694, https://openalex.org/W2994189733, https://openalex.org/W3040135872, https://openalex.org/W3157758108, https://openalex.org/W2988326850, https://openalex.org/W4392939417, https://openalex.org/W4285606401, https://openalex.org/W4327955583, https://openalex.org/W4394862973, https://openalex.org/W4409370096, https://openalex.org/W4406444927, https://openalex.org/W4408288351, https://openalex.org/W2194187530, https://openalex.org/W2963526661, https://openalex.org/W2810983211, https://openalex.org/W1885185971, https://openalex.org/W2963470893, https://openalex.org/W6779823529, https://openalex.org/W4394625581, https://openalex.org/W4403791742, https://openalex.org/W4404914641, https://openalex.org/W3107840264, https://openalex.org/W3177505580, https://openalex.org/W3164382044, https://openalex.org/W4360996069, https://openalex.org/W4226544595, https://openalex.org/W4382449827, https://openalex.org/W3174746398, https://openalex.org/W4385764576, https://openalex.org/W4387968993, https://openalex.org/W4387457767, https://openalex.org/W4392902749, https://openalex.org/W4405842247, https://openalex.org/W6862808467, https://openalex.org/W4400073289, https://openalex.org/W4389305847, https://openalex.org/W4409014340, https://openalex.org/W4401111013, https://openalex.org/W2476548250, https://openalex.org/W4312879041, https://openalex.org/W4390872583, https://openalex.org/W2917883546, https://openalex.org/W2064675550, https://openalex.org/W2127141656, https://openalex.org/W2798405286, https://openalex.org/W2912290085, https://openalex.org/W2919234133, https://openalex.org/W3096739052, https://openalex.org/W3206615376, https://openalex.org/W2964101377, https://openalex.org/W4312923907 |
| referenced_works_count | 51 |
| abstract_inverted_index.a | 51, 57, 138, 143, 159, 164 |
| abstract_inverted_index.In | 46 |
| abstract_inverted_index.We | 100 |
| abstract_inverted_index.in | 36, 213 |
| abstract_inverted_index.is | 223 |
| abstract_inverted_index.of | 9, 93, 185, 196 |
| abstract_inverted_index.on | 203 |
| abstract_inverted_index.to | 154 |
| abstract_inverted_index.we | 49 |
| abstract_inverted_index.Our | 69 |
| abstract_inverted_index.The | 177, 219 |
| abstract_inverted_index.and | 30, 39, 83, 119, 150, 158, 173, 194, 217 |
| abstract_inverted_index.at: | 225 |
| abstract_inverted_index.for | 79, 87, 115, 170, 221 |
| abstract_inverted_index.the | 6, 132, 192, 204 |
| abstract_inverted_index.two | 186 |
| abstract_inverted_index.(CA) | 78 |
| abstract_inverted_index.(SA) | 86 |
| abstract_inverted_index.(SR) | 145 |
| abstract_inverted_index.AGFE | 149 |
| abstract_inverted_index.Long | 110 |
| abstract_inverted_index.MADN | 136, 222 |
| abstract_inverted_index.MARB | 152 |
| abstract_inverted_index.Text | 1, 165 |
| abstract_inverted_index.This | 123 |
| abstract_inverted_index.code | 220 |
| abstract_inverted_index.from | 26 |
| abstract_inverted_index.text | 174 |
| abstract_inverted_index.that | 13, 42, 61 |
| abstract_inverted_index.this | 47 |
| abstract_inverted_index.with | 53, 148, 163, 210 |
| abstract_inverted_index.(FFM) | 181 |
| abstract_inverted_index.Image | 2 |
| abstract_inverted_index.PSNR, | 216 |
| abstract_inverted_index.Prior | 166 |
| abstract_inverted_index.SSIM. | 218 |
| abstract_inverted_index.Scene | 0 |
| abstract_inverted_index.along | 162 |
| abstract_inverted_index.fuses | 182 |
| abstract_inverted_index.model | 125 |
| abstract_inverted_index.prior | 21 |
| abstract_inverted_index.these | 63 |
| abstract_inverted_index.which | 107 |
| abstract_inverted_index.while | 96, 130 |
| abstract_inverted_index.(AGFE) | 73 |
| abstract_inverted_index.(TPEM) | 169 |
| abstract_inverted_index.Blocks | 105 |
| abstract_inverted_index.Fusion | 179 |
| abstract_inverted_index.Memory | 112 |
| abstract_inverted_index.Module | 168, 180 |
| abstract_inverted_index.across | 191 |
| abstract_inverted_index.adopts | 137 |
| abstract_inverted_index.branch | 146 |
| abstract_inverted_index.hybrid | 139 |
| abstract_inverted_index.inputs | 157 |
| abstract_inverted_index.module | 74 |
| abstract_inverted_index.paper, | 48 |
| abstract_inverted_index.suffer | 25 |
| abstract_inverted_index.(BLSTM) | 113 |
| abstract_inverted_index.(MADN), | 56 |
| abstract_inverted_index.(MARB), | 106 |
| abstract_inverted_index.(STISR) | 4 |
| abstract_inverted_index.Branch, | 161 |
| abstract_inverted_index.Channel | 76 |
| abstract_inverted_index.Despite | 18 |
| abstract_inverted_index.Feature | 71, 178 |
| abstract_inverted_index.Network | 55 |
| abstract_inverted_index.Spatial | 84 |
| abstract_inverted_index.dataset | 206 |
| abstract_inverted_index.feature | 28, 67, 81, 175 |
| abstract_inverted_index.forward | 171 |
| abstract_inverted_index.further | 101 |
| abstract_inverted_index.imagery | 12 |
| abstract_inverted_index.methods | 24 |
| abstract_inverted_index.modules | 153 |
| abstract_inverted_index.process | 155 |
| abstract_inverted_index.propose | 50 |
| abstract_inverted_index.spatial | 40 |
| abstract_inverted_index.textual | 11, 44, 134 |
| abstract_inverted_index.through | 65, 198 |
| abstract_inverted_index.Guidance | 160 |
| abstract_inverted_index.Residual | 104 |
| abstract_inverted_index.TextZoom | 205 |
| abstract_inverted_index.accuracy | 8 |
| abstract_inverted_index.acquires | 126 |
| abstract_inverted_index.adaptive | 80 |
| abstract_inverted_index.branches | 193 |
| abstract_inverted_index.cascaded | 151 |
| abstract_inverted_index.degraded | 10 |
| abstract_inverted_index.dilution | 38 |
| abstract_inverted_index.enabling | 90, 188 |
| abstract_inverted_index.enhances | 5 |
| abstract_inverted_index.equipped | 147 |
| abstract_inverted_index.exchange | 190 |
| abstract_inverted_index.existing | 23 |
| abstract_inverted_index.features | 95, 184, 197 |
| abstract_inverted_index.modeling | 116 |
| abstract_inverted_index.networks | 114 |
| abstract_inverted_index.refining | 120 |
| abstract_inverted_index.requires | 14 |
| abstract_inverted_index.Accuracy, | 215 |
| abstract_inverted_index.Attention | 77, 85 |
| abstract_inverted_index.Diffusion | 54 |
| abstract_inverted_index.Extensive | 201 |
| abstract_inverted_index.addresses | 62 |
| abstract_inverted_index.attention | 59 |
| abstract_inverted_index.available | 224 |
| abstract_inverted_index.branches, | 187 |
| abstract_inverted_index.character | 16 |
| abstract_inverted_index.diffusion | 172, 199 |
| abstract_inverted_index.features. | 122 |
| abstract_inverted_index.framework | 60 |
| abstract_inverted_index.integrate | 108 |
| abstract_inverted_index.introduce | 102 |
| abstract_inverted_index.modeling, | 34 |
| abstract_inverted_index.relations | 129 |
| abstract_inverted_index.resulting | 35 |
| abstract_inverted_index.selective | 91 |
| abstract_inverted_index.Extraction | 72 |
| abstract_inverted_index.Short-Term | 111 |
| abstract_inverted_index.background | 98 |
| abstract_inverted_index.comprising | 142 |
| abstract_inverted_index.compromise | 43 |
| abstract_inverted_index.contextual | 128 |
| abstract_inverted_index.dependency | 33 |
| abstract_inverted_index.implements | 75 |
| abstract_inverted_index.inadequate | 31 |
| abstract_inverted_index.knowledge, | 22 |
| abstract_inverted_index.preserving | 131 |
| abstract_inverted_index.refinement | 195 |
| abstract_inverted_index.sequential | 32, 117 |
| abstract_inverted_index.structure. | 135 |
| abstract_inverted_index.suboptimal | 27 |
| abstract_inverted_index.Enhancement | 167 |
| abstract_inverted_index.Recognition | 214 |
| abstract_inverted_index.demonstrate | 207 |
| abstract_inverted_index.dual-branch | 140 |
| abstract_inverted_index.dual-domain | 66 |
| abstract_inverted_index.experiments | 202 |
| abstract_inverted_index.generation. | 176 |
| abstract_inverted_index.information | 37, 189 |
| abstract_inverted_index.legibility. | 45 |
| abstract_inverted_index.limitations | 64 |
| abstract_inverted_index.mechanisms. | 200 |
| abstract_inverted_index.multi-scale | 183 |
| abstract_inverted_index.performance | 209 |
| abstract_inverted_index.recognition | 7 |
| abstract_inverted_index.refinement. | 68 |
| abstract_inverted_index.significant | 211 |
| abstract_inverted_index.suppressing | 97 |
| abstract_inverted_index.dependencies | 118 |
| abstract_inverted_index.fine-grained | 15, 133 |
| abstract_inverted_index.hierarchical | 58 |
| abstract_inverted_index.improvements | 212 |
| abstract_inverted_index.Bidirectional | 109 |
| abstract_inverted_index.amplification | 92 |
| abstract_inverted_index.architecture, | 141 |
| abstract_inverted_index.discontinuity | 41 |
| abstract_inverted_index.incorporating | 19 |
| abstract_inverted_index.interference. | 99 |
| abstract_inverted_index.localization, | 89 |
| abstract_inverted_index.recalibration | 82 |
| abstract_inverted_index.text-critical | 94 |
| abstract_inverted_index.text-specific | 20 |
| abstract_inverted_index.discrimination | 29 |
| abstract_inverted_index.low-resolution | 156 |
| abstract_inverted_index.Multi-Attention | 52, 103 |
| abstract_inverted_index.inter-character | 127 |
| abstract_inverted_index.reconstruction. | 17 |
| abstract_inverted_index.region-specific | 88 |
| abstract_inverted_index.Attention-Guided | 70 |
| abstract_inverted_index.Super-Resolution | 3, 144 |
| abstract_inverted_index.state-of-the-art | 208 |
| abstract_inverted_index.multi-dimensional | 121 |
| abstract_inverted_index.multi-attention-based | 124 |
| abstract_inverted_index.<uri>https://github.com/cuee-mdap/madn-net</uri> | 226 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.36302526 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |