MADNet 2.0: Pixel-Scale Topography Retrieval from Single-View Orbital Imagery of Mars Using Deep Learning Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/rs13214220
The High-Resolution Imaging Science Experiment (HiRISE) onboard the Mars Reconnaissance Orbiter provides remotely sensed imagery at the highest spatial resolution at 25–50 cm/pixel of the surface of Mars. However, due to the spatial resolution being so high, the total area covered by HiRISE targeted stereo acquisitions is very limited. This results in a lack of the availability of high-resolution digital terrain models (DTMs) which are better than 1 m/pixel. Such high-resolution DTMs have always been considered desirable for the international community of planetary scientists to carry out fine-scale geological analysis of the Martian surface. Recently, new deep learning-based techniques that are able to retrieve DTMs from single optical orbital imagery have been developed and applied to single HiRISE observational data. In this paper, we improve upon a previously developed single-image DTM estimation system called MADNet (1.0). We propose optimisations which we collectively call MADNet 2.0, which is based on a supervised image-to-height estimation network, multi-scale DTM reconstruction, and 3D co-alignment processes. In particular, we employ optimised single-scale inference and multi-scale reconstruction (in MADNet 2.0), instead of multi-scale inference and single-scale reconstruction (in MADNet 1.0), to produce more accurate large-scale topographic retrieval with boosted fine-scale resolution. We demonstrate the improvements of the MADNet 2.0 DTMs produced using HiRISE images, in comparison to the MADNet 1.0 DTMs and the published Planetary Data System (PDS) DTMs over the ExoMars Rosalind Franklin rover’s landing site at Oxia Planum. Qualitative and quantitative assessments suggest the proposed MADNet 2.0 system is capable of producing pixel-scale DTM retrieval at the same spatial resolution (25 cm/pixel) of the input HiRISE images.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs13214220
- https://www.mdpi.com/2072-4292/13/21/4220/pdf?version=1636537666
- OA Status
- gold
- Cited By
- 18
- References
- 72
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3209096893
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3209096893Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs13214220Digital Object Identifier
- Title
-
MADNet 2.0: Pixel-Scale Topography Retrieval from Single-View Orbital Imagery of Mars Using Deep LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-10-21Full publication date if available
- Authors
-
Yu Tao, Jan‐Peter Müller, Siting Xiong, Susan J. ConwayList of authors in order
- Landing page
-
https://doi.org/10.3390/rs13214220Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/13/21/4220/pdf?version=1636537666Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/13/21/4220/pdf?version=1636537666Direct OA link when available
- Concepts
-
Mars Exploration Program, Remote sensing, Orbiter, Martian surface, Scale (ratio), Geology, Terrain, Pixel, Computer science, Martian, Artificial intelligence, Astrobiology, Cartography, Geography, Aerospace engineering, Physics, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
18Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 3, 2023: 5, 2022: 6Per-year citation counts (last 5 years)
- References (count)
-
72Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3209096893 |
|---|---|
| doi | https://doi.org/10.3390/rs13214220 |
| ids.doi | https://doi.org/10.3390/rs13214220 |
| ids.mag | 3209096893 |
| ids.openalex | https://openalex.org/W3209096893 |
| fwci | 2.41899494 |
| type | article |
| title | MADNet 2.0: Pixel-Scale Topography Retrieval from Single-View Orbital Imagery of Mars Using Deep Learning |
| awards[0].id | https://openalex.org/G8261180445 |
| awards[0].funder_id | https://openalex.org/F4320321543 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2019M663073 |
| awards[0].funder_display_name | China Postdoctoral Science Foundation |
| awards[1].id | https://openalex.org/G6151509583 |
| awards[1].funder_id | https://openalex.org/F4320325432 |
| awards[1].display_name | |
| awards[1].funder_award_id | ST/S001891/1 |
| awards[1].funder_display_name | United Kingdom Space Agency |
| awards[2].id | https://openalex.org/G2496377866 |
| awards[2].funder_id | https://openalex.org/F4320334632 |
| awards[2].display_name | |
| awards[2].funder_award_id | ST/K000977/1 |
| awards[2].funder_display_name | Science and Technology Facilities Council |
| biblio.issue | 21 |
| biblio.volume | 13 |
| biblio.last_page | 4220 |
| biblio.first_page | 4220 |
| topics[0].id | https://openalex.org/T10406 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3103 |
| topics[0].subfield.display_name | Astronomy and Astrophysics |
| topics[0].display_name | Planetary Science and Exploration |
| topics[1].id | https://openalex.org/T10325 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.989799976348877 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3103 |
| topics[1].subfield.display_name | Astronomy and Astrophysics |
| topics[1].display_name | Astro and Planetary Science |
| topics[2].id | https://openalex.org/T10191 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9887999892234802 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Robotics and Sensor-Based Localization |
| funders[0].id | https://openalex.org/F4320321543 |
| funders[0].ror | https://ror.org/0426zh255 |
| funders[0].display_name | China Postdoctoral Science Foundation |
| funders[1].id | https://openalex.org/F4320325432 |
| funders[1].ror | https://ror.org/051sgbe98 |
| funders[1].display_name | United Kingdom Space Agency |
| funders[2].id | https://openalex.org/F4320334632 |
| funders[2].ror | https://ror.org/057g20z61 |
| funders[2].display_name | Science and Technology Facilities Council |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C83260615 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7563644051551819 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6773121 |
| concepts[0].display_name | Mars Exploration Program |
| concepts[1].id | https://openalex.org/C62649853 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7022236585617065 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[1].display_name | Remote sensing |
| concepts[2].id | https://openalex.org/C2776481522 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6928309202194214 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q40218 |
| concepts[2].display_name | Orbiter |
| concepts[3].id | https://openalex.org/C2776219924 |
| concepts[3].level | 4 |
| concepts[3].score | 0.6668286323547363 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6774740 |
| concepts[3].display_name | Martian surface |
| concepts[4].id | https://openalex.org/C2778755073 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6066129207611084 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[4].display_name | Scale (ratio) |
| concepts[5].id | https://openalex.org/C127313418 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5954564809799194 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[5].display_name | Geology |
| concepts[6].id | https://openalex.org/C161840515 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5885457396507263 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q186131 |
| concepts[6].display_name | Terrain |
| concepts[7].id | https://openalex.org/C160633673 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5437484979629517 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[7].display_name | Pixel |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.417606383562088 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C2778600265 |
| concepts[9].level | 3 |
| concepts[9].score | 0.402976393699646 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q913850 |
| concepts[9].display_name | Martian |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3850051760673523 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C87355193 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1642007827758789 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q411 |
| concepts[11].display_name | Astrobiology |
| concepts[12].id | https://openalex.org/C58640448 |
| concepts[12].level | 1 |
| concepts[12].score | 0.14614218473434448 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[12].display_name | Cartography |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.12982305884361267 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C146978453 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[14].display_name | Aerospace engineering |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/mars-exploration-program |
| keywords[0].score | 0.7563644051551819 |
| keywords[0].display_name | Mars Exploration Program |
| keywords[1].id | https://openalex.org/keywords/remote-sensing |
| keywords[1].score | 0.7022236585617065 |
| keywords[1].display_name | Remote sensing |
| keywords[2].id | https://openalex.org/keywords/orbiter |
| keywords[2].score | 0.6928309202194214 |
| keywords[2].display_name | Orbiter |
| keywords[3].id | https://openalex.org/keywords/martian-surface |
| keywords[3].score | 0.6668286323547363 |
| keywords[3].display_name | Martian surface |
| keywords[4].id | https://openalex.org/keywords/scale |
| keywords[4].score | 0.6066129207611084 |
| keywords[4].display_name | Scale (ratio) |
| keywords[5].id | https://openalex.org/keywords/geology |
| keywords[5].score | 0.5954564809799194 |
| keywords[5].display_name | Geology |
| keywords[6].id | https://openalex.org/keywords/terrain |
| keywords[6].score | 0.5885457396507263 |
| keywords[6].display_name | Terrain |
| keywords[7].id | https://openalex.org/keywords/pixel |
| keywords[7].score | 0.5437484979629517 |
| keywords[7].display_name | Pixel |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.417606383562088 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/martian |
| keywords[9].score | 0.402976393699646 |
| keywords[9].display_name | Martian |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3850051760673523 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/astrobiology |
| keywords[11].score | 0.1642007827758789 |
| keywords[11].display_name | Astrobiology |
| keywords[12].id | https://openalex.org/keywords/cartography |
| keywords[12].score | 0.14614218473434448 |
| keywords[12].display_name | Cartography |
| keywords[13].id | https://openalex.org/keywords/geography |
| keywords[13].score | 0.12982305884361267 |
| keywords[13].display_name | Geography |
| language | en |
| locations[0].id | doi:10.3390/rs13214220 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/13/21/4220/pdf?version=1636537666 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs13214220 |
| locations[1].id | pmh:oai:HAL:hal-03537847v1 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402512 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[1].source.host_organization | https://openalex.org/I1294671590 |
| locations[1].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[1].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Journal articles |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, 2021, 13 (21), pp.4220. ⟨10.3390/rs13214220⟩ |
| locations[1].landing_page_url | https://hal.science/hal-03537847 |
| locations[2].id | pmh:oai:doaj.org/article:0886883f11b4422da1a277c429a7264a |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing, Vol 13, Iss 21, p 4220 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/0886883f11b4422da1a277c429a7264a |
| locations[3].id | pmh:oai:mdpi.com:/2072-4292/13/21/4220/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Remote Sensing; Volume 13; Issue 21; Pages: 4220 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/rs13214220 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5032230594 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9170-6655 |
| authorships[0].author.display_name | Yu Tao |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[0].affiliations[0].raw_affiliation_string | Mullard Space Science Laboratory, Imaging Group, Department of Space and Climate Physics, University College London, Holmbury St Mary, Surrey RH5 6NT, UK |
| authorships[0].institutions[0].id | https://openalex.org/I45129253 |
| authorships[0].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University College London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yu Tao |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Mullard Space Science Laboratory, Imaging Group, Department of Space and Climate Physics, University College London, Holmbury St Mary, Surrey RH5 6NT, UK |
| authorships[1].author.id | https://openalex.org/A5026635713 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5077-3736 |
| authorships[1].author.display_name | Jan‐Peter Müller |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[1].affiliations[0].raw_affiliation_string | Mullard Space Science Laboratory, Imaging Group, Department of Space and Climate Physics, University College London, Holmbury St Mary, Surrey RH5 6NT, UK |
| authorships[1].institutions[0].id | https://openalex.org/I45129253 |
| authorships[1].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University College London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jan-Peter Muller |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Mullard Space Science Laboratory, Imaging Group, Department of Space and Climate Physics, University College London, Holmbury St Mary, Surrey RH5 6NT, UK |
| authorships[2].author.id | https://openalex.org/A5042413003 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1054-121X |
| authorships[2].author.display_name | Siting Xiong |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I180726961, https://openalex.org/I211433327 |
| authorships[2].affiliations[0].raw_affiliation_string | Ministry of Natural Resources Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Guangdong Key Laboratory of Urban Informatics & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I180726961 |
| authorships[2].affiliations[1].raw_affiliation_string | College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China |
| authorships[2].institutions[0].id | https://openalex.org/I211433327 |
| authorships[2].institutions[0].ror | https://ror.org/02kxqx159 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I211433327, https://openalex.org/I4210127390 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Ministry of Natural Resources |
| authorships[2].institutions[1].id | https://openalex.org/I180726961 |
| authorships[2].institutions[1].ror | https://ror.org/01vy4gh70 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I180726961 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Shenzhen University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Siting Xiong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China, Ministry of Natural Resources Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Guangdong Key Laboratory of Urban Informatics & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China |
| authorships[3].author.id | https://openalex.org/A5008201742 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0577-2312 |
| authorships[3].author.display_name | Susan J. Conway |
| authorships[3].countries | FR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I4210146808 |
| authorships[3].affiliations[0].raw_affiliation_string | Laboratoire de Planétologie et Géodynamique, CNRS, UMR 6112, Universités de Nantes, 44300 Nantes, France |
| authorships[3].institutions[0].id | https://openalex.org/I1294671590 |
| authorships[3].institutions[0].ror | https://ror.org/02feahw73 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I1294671590 |
| authorships[3].institutions[0].country_code | FR |
| authorships[3].institutions[0].display_name | Centre National de la Recherche Scientifique |
| authorships[3].institutions[1].id | https://openalex.org/I4210146808 |
| authorships[3].institutions[1].ror | https://ror.org/04fm0sh33 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I124158823, https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I205703379, https://openalex.org/I2799535048, https://openalex.org/I4210108471, https://openalex.org/I4210127572, https://openalex.org/I4210134562, https://openalex.org/I4210145102, https://openalex.org/I4210146808, https://openalex.org/I4210148025, https://openalex.org/I4210148025, https://openalex.org/I4387153462, https://openalex.org/I49451733, https://openalex.org/I49451733, https://openalex.org/I97188460, https://openalex.org/I97188460 |
| authorships[3].institutions[1].country_code | FR |
| authorships[3].institutions[1].display_name | Laboratoire de Planétologie et Géosciences |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Susan J. Conway |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Laboratoire de Planétologie et Géodynamique, CNRS, UMR 6112, Universités de Nantes, 44300 Nantes, France |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/13/21/4220/pdf?version=1636537666 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-11-08T00:00:00 |
| display_name | MADNet 2.0: Pixel-Scale Topography Retrieval from Single-View Orbital Imagery of Mars Using Deep Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10406 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3103 |
| primary_topic.subfield.display_name | Astronomy and Astrophysics |
| primary_topic.display_name | Planetary Science and Exploration |
| related_works | https://openalex.org/W4392882908, https://openalex.org/W2188776111, https://openalex.org/W2040110504, https://openalex.org/W3161345278, https://openalex.org/W2990005978, https://openalex.org/W3107207333, https://openalex.org/W2007080654, https://openalex.org/W3149160274, https://openalex.org/W1625147633, https://openalex.org/W2963551866 |
| cited_by_count | 18 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/rs13214220 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/13/21/4220/pdf?version=1636537666 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs13214220 |
| primary_location.id | doi:10.3390/rs13214220 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/13/21/4220/pdf?version=1636537666 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs13214220 |
| publication_date | 2021-10-21 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W6636493758, https://openalex.org/W2076509405, https://openalex.org/W2282278185, https://openalex.org/W2028483491, https://openalex.org/W3135575958, https://openalex.org/W3186611792, https://openalex.org/W3194781430, https://openalex.org/W2794151468, https://openalex.org/W3126330180, https://openalex.org/W3118242898, https://openalex.org/W2045323482, https://openalex.org/W2057911607, https://openalex.org/W2017613487, https://openalex.org/W2045367855, https://openalex.org/W3035289617, https://openalex.org/W3017059628, https://openalex.org/W3093404170, https://openalex.org/W2150066425, https://openalex.org/W125693051, https://openalex.org/W2259424905, https://openalex.org/W1905829557, https://openalex.org/W2245606284, https://openalex.org/W2963591054, https://openalex.org/W2124907686, https://openalex.org/W1803059841, https://openalex.org/W1915250530, https://openalex.org/W2343077198, https://openalex.org/W1901129140, https://openalex.org/W2793286375, https://openalex.org/W2891048446, https://openalex.org/W2967115342, https://openalex.org/W2964014680, https://openalex.org/W3120644635, https://openalex.org/W2300779272, https://openalex.org/W2609883120, https://openalex.org/W2520707372, https://openalex.org/W2806446538, https://openalex.org/W2133665775, https://openalex.org/W2963654727, https://openalex.org/W2964020152, https://openalex.org/W2934279571, https://openalex.org/W2963583471, https://openalex.org/W2890949887, https://openalex.org/W2964968086, https://openalex.org/W2963652981, https://openalex.org/W2950304854, https://openalex.org/W3033471401, https://openalex.org/W2143291846, https://openalex.org/W2402704303, https://openalex.org/W2512689497, https://openalex.org/W2963416674, https://openalex.org/W6641256678, https://openalex.org/W2967550825, https://openalex.org/W2911826324, https://openalex.org/W3174214922, https://openalex.org/W3180199962, https://openalex.org/W3159754806, https://openalex.org/W2963446712, https://openalex.org/W3150060591, https://openalex.org/W3185518044, https://openalex.org/W2021567953, https://openalex.org/W2322744842, https://openalex.org/W2888945633, https://openalex.org/W1983854836, https://openalex.org/W2990021612, https://openalex.org/W2977276443, https://openalex.org/W6784427822, https://openalex.org/W3091517847, https://openalex.org/W1621316380, https://openalex.org/W3100847195, https://openalex.org/W3096831136, https://openalex.org/W3101424466 |
| referenced_works_count | 72 |
| abstract_inverted_index.1 | 67 |
| abstract_inverted_index.a | 52, 126, 149 |
| abstract_inverted_index.3D | 158 |
| abstract_inverted_index.In | 120, 161 |
| abstract_inverted_index.We | 136, 195 |
| abstract_inverted_index.at | 15, 20, 231, 251 |
| abstract_inverted_index.by | 41 |
| abstract_inverted_index.in | 51, 208 |
| abstract_inverted_index.is | 46, 146, 244 |
| abstract_inverted_index.of | 23, 26, 54, 57, 81, 90, 175, 199, 246, 258 |
| abstract_inverted_index.on | 148 |
| abstract_inverted_index.so | 35 |
| abstract_inverted_index.to | 30, 84, 102, 115, 184, 210 |
| abstract_inverted_index.we | 123, 140, 163 |
| abstract_inverted_index.(25 | 256 |
| abstract_inverted_index.(in | 171, 181 |
| abstract_inverted_index.1.0 | 213 |
| abstract_inverted_index.2.0 | 202, 242 |
| abstract_inverted_index.DTM | 130, 155, 249 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 113, 157, 168, 178, 215, 235 |
| abstract_inverted_index.are | 64, 100 |
| abstract_inverted_index.due | 29 |
| abstract_inverted_index.for | 77 |
| abstract_inverted_index.new | 95 |
| abstract_inverted_index.out | 86 |
| abstract_inverted_index.the | 7, 16, 24, 31, 37, 55, 78, 91, 197, 200, 211, 216, 224, 239, 252, 259 |
| abstract_inverted_index.2.0, | 144 |
| abstract_inverted_index.DTMs | 71, 104, 203, 214, 222 |
| abstract_inverted_index.Data | 219 |
| abstract_inverted_index.Mars | 8 |
| abstract_inverted_index.Oxia | 232 |
| abstract_inverted_index.Such | 69 |
| abstract_inverted_index.This | 49 |
| abstract_inverted_index.able | 101 |
| abstract_inverted_index.area | 39 |
| abstract_inverted_index.been | 74, 111 |
| abstract_inverted_index.call | 142 |
| abstract_inverted_index.deep | 96 |
| abstract_inverted_index.from | 105 |
| abstract_inverted_index.have | 72, 110 |
| abstract_inverted_index.lack | 53 |
| abstract_inverted_index.more | 186 |
| abstract_inverted_index.over | 223 |
| abstract_inverted_index.same | 253 |
| abstract_inverted_index.site | 230 |
| abstract_inverted_index.than | 66 |
| abstract_inverted_index.that | 99 |
| abstract_inverted_index.this | 121 |
| abstract_inverted_index.upon | 125 |
| abstract_inverted_index.very | 47 |
| abstract_inverted_index.with | 191 |
| abstract_inverted_index.(PDS) | 221 |
| abstract_inverted_index.1.0), | 183 |
| abstract_inverted_index.2.0), | 173 |
| abstract_inverted_index.Mars. | 27 |
| abstract_inverted_index.based | 147 |
| abstract_inverted_index.being | 34 |
| abstract_inverted_index.carry | 85 |
| abstract_inverted_index.data. | 119 |
| abstract_inverted_index.high, | 36 |
| abstract_inverted_index.input | 260 |
| abstract_inverted_index.total | 38 |
| abstract_inverted_index.using | 205 |
| abstract_inverted_index.which | 63, 139, 145 |
| abstract_inverted_index.(1.0). | 135 |
| abstract_inverted_index.(DTMs) | 62 |
| abstract_inverted_index.HiRISE | 42, 117, 206, 261 |
| abstract_inverted_index.MADNet | 134, 143, 172, 182, 201, 212, 241 |
| abstract_inverted_index.System | 220 |
| abstract_inverted_index.always | 73 |
| abstract_inverted_index.better | 65 |
| abstract_inverted_index.called | 133 |
| abstract_inverted_index.employ | 164 |
| abstract_inverted_index.models | 61 |
| abstract_inverted_index.paper, | 122 |
| abstract_inverted_index.sensed | 13 |
| abstract_inverted_index.single | 106, 116 |
| abstract_inverted_index.stereo | 44 |
| abstract_inverted_index.system | 132, 243 |
| abstract_inverted_index.25–50 | 21 |
| abstract_inverted_index.ExoMars | 225 |
| abstract_inverted_index.Imaging | 2 |
| abstract_inverted_index.Martian | 92 |
| abstract_inverted_index.Orbiter | 10 |
| abstract_inverted_index.Planum. | 233 |
| abstract_inverted_index.Science | 3 |
| abstract_inverted_index.applied | 114 |
| abstract_inverted_index.boosted | 192 |
| abstract_inverted_index.capable | 245 |
| abstract_inverted_index.covered | 40 |
| abstract_inverted_index.digital | 59 |
| abstract_inverted_index.highest | 17 |
| abstract_inverted_index.imagery | 14, 109 |
| abstract_inverted_index.images, | 207 |
| abstract_inverted_index.images. | 262 |
| abstract_inverted_index.improve | 124 |
| abstract_inverted_index.instead | 174 |
| abstract_inverted_index.landing | 229 |
| abstract_inverted_index.onboard | 6 |
| abstract_inverted_index.optical | 107 |
| abstract_inverted_index.orbital | 108 |
| abstract_inverted_index.produce | 185 |
| abstract_inverted_index.propose | 137 |
| abstract_inverted_index.results | 50 |
| abstract_inverted_index.spatial | 18, 32, 254 |
| abstract_inverted_index.suggest | 238 |
| abstract_inverted_index.surface | 25 |
| abstract_inverted_index.terrain | 60 |
| abstract_inverted_index.(HiRISE) | 5 |
| abstract_inverted_index.Franklin | 227 |
| abstract_inverted_index.However, | 28 |
| abstract_inverted_index.Rosalind | 226 |
| abstract_inverted_index.accurate | 187 |
| abstract_inverted_index.analysis | 89 |
| abstract_inverted_index.cm/pixel | 22 |
| abstract_inverted_index.limited. | 48 |
| abstract_inverted_index.m/pixel. | 68 |
| abstract_inverted_index.network, | 153 |
| abstract_inverted_index.produced | 204 |
| abstract_inverted_index.proposed | 240 |
| abstract_inverted_index.provides | 11 |
| abstract_inverted_index.remotely | 12 |
| abstract_inverted_index.retrieve | 103 |
| abstract_inverted_index.surface. | 93 |
| abstract_inverted_index.targeted | 43 |
| abstract_inverted_index.Planetary | 218 |
| abstract_inverted_index.Recently, | 94 |
| abstract_inverted_index.cm/pixel) | 257 |
| abstract_inverted_index.community | 80 |
| abstract_inverted_index.desirable | 76 |
| abstract_inverted_index.developed | 112, 128 |
| abstract_inverted_index.inference | 167, 177 |
| abstract_inverted_index.optimised | 165 |
| abstract_inverted_index.planetary | 82 |
| abstract_inverted_index.producing | 247 |
| abstract_inverted_index.published | 217 |
| abstract_inverted_index.retrieval | 190, 250 |
| abstract_inverted_index.rover’s | 228 |
| abstract_inverted_index.Experiment | 4 |
| abstract_inverted_index.comparison | 209 |
| abstract_inverted_index.considered | 75 |
| abstract_inverted_index.estimation | 131, 152 |
| abstract_inverted_index.fine-scale | 87, 193 |
| abstract_inverted_index.geological | 88 |
| abstract_inverted_index.previously | 127 |
| abstract_inverted_index.processes. | 160 |
| abstract_inverted_index.resolution | 19, 33, 255 |
| abstract_inverted_index.scientists | 83 |
| abstract_inverted_index.supervised | 150 |
| abstract_inverted_index.techniques | 98 |
| abstract_inverted_index.Qualitative | 234 |
| abstract_inverted_index.assessments | 237 |
| abstract_inverted_index.demonstrate | 196 |
| abstract_inverted_index.large-scale | 188 |
| abstract_inverted_index.multi-scale | 154, 169, 176 |
| abstract_inverted_index.particular, | 162 |
| abstract_inverted_index.pixel-scale | 248 |
| abstract_inverted_index.resolution. | 194 |
| abstract_inverted_index.topographic | 189 |
| abstract_inverted_index.acquisitions | 45 |
| abstract_inverted_index.availability | 56 |
| abstract_inverted_index.co-alignment | 159 |
| abstract_inverted_index.collectively | 141 |
| abstract_inverted_index.improvements | 198 |
| abstract_inverted_index.quantitative | 236 |
| abstract_inverted_index.single-image | 129 |
| abstract_inverted_index.single-scale | 166, 179 |
| abstract_inverted_index.international | 79 |
| abstract_inverted_index.observational | 118 |
| abstract_inverted_index.optimisations | 138 |
| abstract_inverted_index.Reconnaissance | 9 |
| abstract_inverted_index.learning-based | 97 |
| abstract_inverted_index.reconstruction | 170, 180 |
| abstract_inverted_index.High-Resolution | 1 |
| abstract_inverted_index.high-resolution | 58, 70 |
| abstract_inverted_index.image-to-height | 151 |
| abstract_inverted_index.reconstruction, | 156 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5032230594 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I45129253 |
| citation_normalized_percentile.value | 0.88901553 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |