MagicalRsq: Machine-learning-based genotype imputation quality calibration Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.ajhg.2022.09.009
Whole-genome sequencing (WGS) is the gold standard for fully characterizing genetic variation but is still prohibitively expensive for large samples. To reduce costs, many studies sequence only a subset of individuals or genomic regions, and genotype imputation is used to infer genotypes for the remaining individuals or regions without sequencing data. However, not all variants can be well imputed, and the current state-of-the-art imputation quality metric, denoted as standard Rsq, is poorly calibrated for lower-frequency variants. Here, we propose MagicalRsq, a machine-learning-based method that integrates variant-level imputation and population genetics statistics, to provide a better calibrated imputation quality metric. Leveraging WGS data from the Cystic Fibrosis Genome Project (CFGP), and whole-exome sequence data from UK BioBank (UKB), we performed comprehensive experiments to evaluate the performance of MagicalRsq compared to standard Rsq for partially sequenced studies. We found that MagicalRsq aligns better with true R2 than standard Rsq in almost every situation evaluated, for both European and African ancestry samples. For example, when applying models trained from 1,992 CFGP sequenced samples to an independent 3,103 samples with no sequencing but TOPMed imputation from array genotypes, MagicalRsq, compared to standard Rsq, achieved net gains of 1.4 million rare, 117k low-frequency, and 18k common variants, where net gains were gained numbers of correctly distinguished variants by MagicalRsq over standard Rsq. MagicalRsq can serve as an improved post-imputation quality metric and will benefit downstream analysis by better distinguishing well-imputed variants from those poorly imputed. MagicalRsq is freely available on GitHub.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ajhg.2022.09.009
- http://www.cell.com/article/S0002929722004128/pdf
- OA Status
- hybrid
- Cited By
- 17
- References
- 56
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4300979371
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4300979371Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ajhg.2022.09.009Digital Object Identifier
- Title
-
MagicalRsq: Machine-learning-based genotype imputation quality calibrationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-04Full publication date if available
- Authors
-
Quan Sun, Yingxi Yang, Jonathan D. Rosen, Min-Zhi Jiang, Jiawen Chen, Weifang Liu, Jia Wen, Laura M. Raffield, Rhonda G. Pace, Yi‐Hui Zhou, Fred A. Wright, Scott M. Blackman, Michael J. Bamshad, Ronald L. Gibson, Garry R. Cutting, Michael R. Knowles, Daniel R. Schrider, Christian Fuchsberger, Yun LiList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ajhg.2022.09.009Publisher landing page
- PDF URL
-
https://www.cell.com/article/S0002929722004128/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://www.cell.com/article/S0002929722004128/pdfDirect OA link when available
- Concepts
-
Imputation (statistics), Exome, Computer science, Whole genome sequencing, Metric (unit), Statistics, Artificial intelligence, Biology, Data mining, Machine learning, Genome, Exome sequencing, Missing data, Genetics, Mathematics, Mutation, Gene, Economics, Operations managementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 8, 2023: 5Per-year citation counts (last 5 years)
- References (count)
-
56Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4300979371 |
|---|---|
| doi | https://doi.org/10.1016/j.ajhg.2022.09.009 |
| ids.doi | https://doi.org/10.1016/j.ajhg.2022.09.009 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36198314 |
| ids.openalex | https://openalex.org/W4300979371 |
| fwci | 3.48327437 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D055106 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Genome-Wide Association Study |
| mesh[2].qualifier_ui | Q000235 |
| mesh[2].descriptor_ui | D020641 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | genetics |
| mesh[2].descriptor_name | Polymorphism, Single Nucleotide |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D002138 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Calibration |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D005838 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Genotype |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000069550 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Machine Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D055106 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Genome-Wide Association Study |
| mesh[8].qualifier_ui | Q000235 |
| mesh[8].descriptor_ui | D020641 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | genetics |
| mesh[8].descriptor_name | Polymorphism, Single Nucleotide |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D002138 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Calibration |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D005838 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Genotype |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000069550 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Machine Learning |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | Q000379 |
| mesh[13].descriptor_ui | D055106 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | methods |
| mesh[13].descriptor_name | Genome-Wide Association Study |
| mesh[14].qualifier_ui | Q000235 |
| mesh[14].descriptor_ui | D020641 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | genetics |
| mesh[14].descriptor_name | Polymorphism, Single Nucleotide |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D002138 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Calibration |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D005838 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Genotype |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000069550 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Machine Learning |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D006801 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Humans |
| mesh[19].qualifier_ui | Q000379 |
| mesh[19].descriptor_ui | D055106 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | methods |
| mesh[19].descriptor_name | Genome-Wide Association Study |
| mesh[20].qualifier_ui | Q000235 |
| mesh[20].descriptor_ui | D020641 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | genetics |
| mesh[20].descriptor_name | Polymorphism, Single Nucleotide |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D002138 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Calibration |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D005838 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Genotype |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D000069550 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Machine Learning |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D006801 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Humans |
| mesh[25].qualifier_ui | Q000379 |
| mesh[25].descriptor_ui | D055106 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | methods |
| mesh[25].descriptor_name | Genome-Wide Association Study |
| mesh[26].qualifier_ui | Q000235 |
| mesh[26].descriptor_ui | D020641 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | genetics |
| mesh[26].descriptor_name | Polymorphism, Single Nucleotide |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D002138 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Calibration |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D005838 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Genotype |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D000069550 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Machine Learning |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D006801 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Humans |
| mesh[31].qualifier_ui | Q000379 |
| mesh[31].descriptor_ui | D055106 |
| mesh[31].is_major_topic | True |
| mesh[31].qualifier_name | methods |
| mesh[31].descriptor_name | Genome-Wide Association Study |
| mesh[32].qualifier_ui | Q000235 |
| mesh[32].descriptor_ui | D020641 |
| mesh[32].is_major_topic | True |
| mesh[32].qualifier_name | genetics |
| mesh[32].descriptor_name | Polymorphism, Single Nucleotide |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D002138 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Calibration |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D005838 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Genotype |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D000069550 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Machine Learning |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D006801 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Humans |
| mesh[37].qualifier_ui | Q000379 |
| mesh[37].descriptor_ui | D055106 |
| mesh[37].is_major_topic | True |
| mesh[37].qualifier_name | methods |
| mesh[37].descriptor_name | Genome-Wide Association Study |
| mesh[38].qualifier_ui | Q000235 |
| mesh[38].descriptor_ui | D020641 |
| mesh[38].is_major_topic | True |
| mesh[38].qualifier_name | genetics |
| mesh[38].descriptor_name | Polymorphism, Single Nucleotide |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D002138 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Calibration |
| mesh[40].qualifier_ui | |
| mesh[40].descriptor_ui | D005838 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | |
| mesh[40].descriptor_name | Genotype |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D000069550 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Machine Learning |
| type | article |
| title | MagicalRsq: Machine-learning-based genotype imputation quality calibration |
| awards[0].id | https://openalex.org/G4796963526 |
| awards[0].funder_id | https://openalex.org/F4320332161 |
| awards[0].display_name | |
| awards[0].funder_award_id | KL2TR002490 |
| awards[0].funder_display_name | National Institutes of Health |
| awards[1].id | https://openalex.org/G5108924296 |
| awards[1].funder_id | https://openalex.org/F4320309652 |
| awards[1].display_name | |
| awards[1].funder_award_id | HHSN268201800002I |
| awards[1].funder_display_name | University of Michigan |
| awards[2].id | https://openalex.org/G3921432814 |
| awards[2].funder_id | https://openalex.org/F4320309652 |
| awards[2].display_name | |
| awards[2].funder_award_id | HHSN268201800001I |
| awards[2].funder_display_name | University of Michigan |
| awards[3].id | https://openalex.org/G1220907374 |
| awards[3].funder_id | https://openalex.org/F4320306168 |
| awards[3].display_name | |
| awards[3].funder_award_id | CUTTIN18XX1 |
| awards[3].funder_display_name | Cystic Fibrosis Foundation |
| awards[4].id | https://openalex.org/G3044228774 |
| awards[4].funder_id | https://openalex.org/F4320332161 |
| awards[4].display_name | |
| awards[4].funder_award_id | R01MH123724 |
| awards[4].funder_display_name | National Institutes of Health |
| awards[5].id | https://openalex.org/G5818672366 |
| awards[5].funder_id | https://openalex.org/F4320309652 |
| awards[5].display_name | |
| awards[5].funder_award_id | U01HL-120393 |
| awards[5].funder_display_name | University of Michigan |
| awards[6].id | https://openalex.org/G5298149031 |
| awards[6].funder_id | https://openalex.org/F4320309652 |
| awards[6].display_name | |
| awards[6].funder_award_id | R01HL-120393 |
| awards[6].funder_display_name | University of Michigan |
| awards[7].id | https://openalex.org/G1316404539 |
| awards[7].funder_id | https://openalex.org/F4320332161 |
| awards[7].display_name | |
| awards[7].funder_award_id | R01HL146500 |
| awards[7].funder_display_name | National Institutes of Health |
| awards[8].id | https://openalex.org/G5755680250 |
| awards[8].funder_id | https://openalex.org/F4320332161 |
| awards[8].display_name | |
| awards[8].funder_award_id | U01HG011720 |
| awards[8].funder_display_name | National Institutes of Health |
| awards[9].id | https://openalex.org/G4777221492 |
| awards[9].funder_id | https://openalex.org/F4320332161 |
| awards[9].display_name | |
| awards[9].funder_award_id | R35GM138286 |
| awards[9].funder_display_name | National Institutes of Health |
| awards[10].id | https://openalex.org/G3850122098 |
| awards[10].funder_id | https://openalex.org/F4320309652 |
| awards[10].display_name | |
| awards[10].funder_award_id | 3R01HL-117626-02S1 |
| awards[10].funder_display_name | University of Michigan |
| awards[11].id | https://openalex.org/G4888253699 |
| awards[11].funder_id | https://openalex.org/F4320332161 |
| awards[11].display_name | |
| awards[11].funder_award_id | U24AR076730 |
| awards[11].funder_display_name | National Institutes of Health |
| awards[12].id | https://openalex.org/G38844257 |
| awards[12].funder_id | https://openalex.org/F4320332161 |
| awards[12].display_name | |
| awards[12].funder_award_id | R01HG009976 |
| awards[12].funder_display_name | National Institutes of Health |
| awards[13].id | https://openalex.org/G8715379201 |
| awards[13].funder_id | https://openalex.org/F4320306168 |
| awards[13].display_name | |
| awards[13].funder_award_id | BAMSHA18XX0 |
| awards[13].funder_display_name | Cystic Fibrosis Foundation |
| awards[14].id | https://openalex.org/G5331993534 |
| awards[14].funder_id | https://openalex.org/F4320334626 |
| awards[14].display_name | |
| awards[14].funder_award_id | MC_PC_17228 |
| awards[14].funder_display_name | Medical Research Council |
| awards[15].id | https://openalex.org/G4563449774 |
| awards[15].funder_id | https://openalex.org/F4320306168 |
| awards[15].display_name | |
| awards[15].funder_award_id | KNOWLE18XX0 |
| awards[15].funder_display_name | Cystic Fibrosis Foundation |
| biblio.issue | 11 |
| biblio.volume | 109 |
| biblio.last_page | 1997 |
| biblio.first_page | 1986 |
| topics[0].id | https://openalex.org/T10665 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9952999949455261 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Cystic Fibrosis Research Advances |
| topics[1].id | https://openalex.org/T10261 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9950000047683716 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1311 |
| topics[1].subfield.display_name | Genetics |
| topics[1].display_name | Genetic Associations and Epidemiology |
| topics[2].id | https://openalex.org/T11642 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9894000291824341 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1311 |
| topics[2].subfield.display_name | Genetics |
| topics[2].display_name | Genomics and Rare Diseases |
| funders[0].id | https://openalex.org/F4320306168 |
| funders[0].ror | https://ror.org/00ax59295 |
| funders[0].display_name | Cystic Fibrosis Foundation |
| funders[1].id | https://openalex.org/F4320309652 |
| funders[1].ror | https://ror.org/00jmfr291 |
| funders[1].display_name | University of Michigan |
| funders[2].id | https://openalex.org/F4320332161 |
| funders[2].ror | https://ror.org/01cwqze88 |
| funders[2].display_name | National Institutes of Health |
| funders[3].id | https://openalex.org/F4320334626 |
| funders[3].ror | https://ror.org/03x94j517 |
| funders[3].display_name | Medical Research Council |
| funders[4].id | https://openalex.org/F4320337338 |
| funders[4].ror | https://ror.org/012pb6c26 |
| funders[4].display_name | National Heart, Lung, and Blood Institute |
| is_xpac | False |
| apc_list.value | 5150 |
| apc_list.currency | USD |
| apc_list.value_usd | 5150 |
| apc_paid.value | 5150 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 5150 |
| concepts[0].id | https://openalex.org/C58041806 |
| concepts[0].level | 3 |
| concepts[0].score | 0.897891640663147 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1660484 |
| concepts[0].display_name | Imputation (statistics) |
| concepts[1].id | https://openalex.org/C10590036 |
| concepts[1].level | 5 |
| concepts[1].score | 0.4829489588737488 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q417664 |
| concepts[1].display_name | Exome |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4817667007446289 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C24432333 |
| concepts[3].level | 4 |
| concepts[3].score | 0.4252949357032776 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2068526 |
| concepts[3].display_name | Whole genome sequencing |
| concepts[4].id | https://openalex.org/C176217482 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4110942482948303 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[4].display_name | Metric (unit) |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3845672011375427 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.38283678889274597 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.346139520406723 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3455302119255066 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3229660391807556 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C141231307 |
| concepts[10].level | 3 |
| concepts[10].score | 0.31005609035491943 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7020 |
| concepts[10].display_name | Genome |
| concepts[11].id | https://openalex.org/C16671776 |
| concepts[11].level | 4 |
| concepts[11].score | 0.30518972873687744 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5420592 |
| concepts[11].display_name | Exome sequencing |
| concepts[12].id | https://openalex.org/C9357733 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2858126759529114 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[12].display_name | Missing data |
| concepts[13].id | https://openalex.org/C54355233 |
| concepts[13].level | 1 |
| concepts[13].score | 0.24438607692718506 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[13].display_name | Genetics |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1802542805671692 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C501734568 |
| concepts[15].level | 3 |
| concepts[15].score | 0.12401258945465088 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q42918 |
| concepts[15].display_name | Mutation |
| concepts[16].id | https://openalex.org/C104317684 |
| concepts[16].level | 2 |
| concepts[16].score | 0.11220631003379822 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[16].display_name | Gene |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| concepts[18].id | https://openalex.org/C21547014 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[18].display_name | Operations management |
| keywords[0].id | https://openalex.org/keywords/imputation |
| keywords[0].score | 0.897891640663147 |
| keywords[0].display_name | Imputation (statistics) |
| keywords[1].id | https://openalex.org/keywords/exome |
| keywords[1].score | 0.4829489588737488 |
| keywords[1].display_name | Exome |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4817667007446289 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/whole-genome-sequencing |
| keywords[3].score | 0.4252949357032776 |
| keywords[3].display_name | Whole genome sequencing |
| keywords[4].id | https://openalex.org/keywords/metric |
| keywords[4].score | 0.4110942482948303 |
| keywords[4].display_name | Metric (unit) |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.3845672011375427 |
| keywords[5].display_name | Statistics |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.38283678889274597 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.346139520406723 |
| keywords[7].display_name | Biology |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.3455302119255066 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.3229660391807556 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/genome |
| keywords[10].score | 0.31005609035491943 |
| keywords[10].display_name | Genome |
| keywords[11].id | https://openalex.org/keywords/exome-sequencing |
| keywords[11].score | 0.30518972873687744 |
| keywords[11].display_name | Exome sequencing |
| keywords[12].id | https://openalex.org/keywords/missing-data |
| keywords[12].score | 0.2858126759529114 |
| keywords[12].display_name | Missing data |
| keywords[13].id | https://openalex.org/keywords/genetics |
| keywords[13].score | 0.24438607692718506 |
| keywords[13].display_name | Genetics |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.1802542805671692 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/mutation |
| keywords[15].score | 0.12401258945465088 |
| keywords[15].display_name | Mutation |
| keywords[16].id | https://openalex.org/keywords/gene |
| keywords[16].score | 0.11220631003379822 |
| keywords[16].display_name | Gene |
| language | en |
| locations[0].id | doi:10.1016/j.ajhg.2022.09.009 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S134425043 |
| locations[0].source.issn | 0002-9297, 1537-6605 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0002-9297 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | The American Journal of Human Genetics |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | other-oa |
| locations[0].pdf_url | http://www.cell.com/article/S0002929722004128/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The American Journal of Human Genetics |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ajhg.2022.09.009 |
| locations[1].id | pmid:36198314 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | American journal of human genetics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36198314 |
| locations[2].id | pmh:oai:alma.39UBZ_INST:11294428460001241 |
| locations[2].is_oa | True |
| locations[2].source | |
| locations[2].license | cc-by-nc-nd |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | text |
| locations[2].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://bia.unibz.it/esploro/outputs/journalArticle/MagicalRsq-Machine-learning-based-genotype-imputation-quality-calibration/991006511697401241 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:9674945 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Am J Hum Genet |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9674945 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5054683932 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8324-2803 |
| authorships[0].author.display_name | Quan Sun |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I114027177 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[0].institutions[0].id | https://openalex.org/I114027177 |
| authorships[0].institutions[0].ror | https://ror.org/0130frc33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I114027177 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of North Carolina at Chapel Hill |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Quan Sun |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[1].author.id | https://openalex.org/A5014559891 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5153-2769 |
| authorships[1].author.display_name | Yingxi Yang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA |
| authorships[1].institutions[0].id | https://openalex.org/I32971472 |
| authorships[1].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Yale University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yingxi Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA |
| authorships[2].author.id | https://openalex.org/A5077901762 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6396-4219 |
| authorships[2].author.display_name | Jonathan D. Rosen |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I114027177 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[2].institutions[0].id | https://openalex.org/I114027177 |
| authorships[2].institutions[0].ror | https://ror.org/0130frc33 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I114027177 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of North Carolina at Chapel Hill |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jonathan D. Rosen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[3].author.id | https://openalex.org/A5035105357 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5502-063X |
| authorships[3].author.display_name | Min-Zhi Jiang |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I114027177, https://openalex.org/I4210132461 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[3].institutions[0].id | https://openalex.org/I4210132461 |
| authorships[3].institutions[0].ror | https://ror.org/03gf10a58 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210132461 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Applied Physical Sciences (United States) |
| authorships[3].institutions[1].id | https://openalex.org/I114027177 |
| authorships[3].institutions[1].ror | https://ror.org/0130frc33 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I114027177 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | University of North Carolina at Chapel Hill |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Min-Zhi Jiang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[4].author.id | https://openalex.org/A5100343372 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6022-9646 |
| authorships[4].author.display_name | Jiawen Chen |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I114027177 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[4].institutions[0].id | https://openalex.org/I114027177 |
| authorships[4].institutions[0].ror | https://ror.org/0130frc33 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I114027177 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of North Carolina at Chapel Hill |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jiawen Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[5].author.id | https://openalex.org/A5012690849 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2278-8946 |
| authorships[5].author.display_name | Weifang Liu |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I114027177 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[5].institutions[0].id | https://openalex.org/I114027177 |
| authorships[5].institutions[0].ror | https://ror.org/0130frc33 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I114027177 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of North Carolina at Chapel Hill |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Weifang Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[6].author.id | https://openalex.org/A5031945784 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3273-7704 |
| authorships[6].author.display_name | Jia Wen |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I114027177 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[6].institutions[0].id | https://openalex.org/I114027177 |
| authorships[6].institutions[0].ror | https://ror.org/0130frc33 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I114027177 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of North Carolina at Chapel Hill |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jia Wen |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[7].author.id | https://openalex.org/A5042360941 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7892-193X |
| authorships[7].author.display_name | Laura M. Raffield |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I114027177 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[7].institutions[0].id | https://openalex.org/I114027177 |
| authorships[7].institutions[0].ror | https://ror.org/0130frc33 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I114027177 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of North Carolina at Chapel Hill |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Laura M. Raffield |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[8].author.id | https://openalex.org/A5043283805 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-8606-0327 |
| authorships[8].author.display_name | Rhonda G. Pace |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I114027177, https://openalex.org/I4210101049 |
| authorships[8].affiliations[0].raw_affiliation_string | Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[8].institutions[0].id | https://openalex.org/I4210101049 |
| authorships[8].institutions[0].ror | https://ror.org/016978714 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210101049 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Lung Institute |
| authorships[8].institutions[1].id | https://openalex.org/I114027177 |
| authorships[8].institutions[1].ror | https://ror.org/0130frc33 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I114027177 |
| authorships[8].institutions[1].country_code | US |
| authorships[8].institutions[1].display_name | University of North Carolina at Chapel Hill |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Rhonda G. Pace |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[9].author.id | https://openalex.org/A5100701642 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-4092-7463 |
| authorships[9].author.display_name | Yi‐Hui Zhou |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I137902535 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA |
| authorships[9].institutions[0].id | https://openalex.org/I137902535 |
| authorships[9].institutions[0].ror | https://ror.org/04tj63d06 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I137902535 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | North Carolina State University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Yi-Hui Zhou |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA |
| authorships[10].author.id | https://openalex.org/A5016238665 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-8238-6626 |
| authorships[10].author.display_name | Fred A. Wright |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I137902535 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA |
| authorships[10].affiliations[1].institution_ids | https://openalex.org/I137902535 |
| authorships[10].affiliations[1].raw_affiliation_string | Bioinformatics Research Center and Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA |
| authorships[10].institutions[0].id | https://openalex.org/I137902535 |
| authorships[10].institutions[0].ror | https://ror.org/04tj63d06 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I137902535 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | North Carolina State University |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Fred A. Wright |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Bioinformatics Research Center and Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA |
| authorships[11].author.id | https://openalex.org/A5038242998 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-4532-6421 |
| authorships[11].author.display_name | Scott M. Blackman |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I145311948, https://openalex.org/I2799853436 |
| authorships[11].affiliations[0].raw_affiliation_string | Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA |
| authorships[11].institutions[0].id | https://openalex.org/I2799853436 |
| authorships[11].institutions[0].ror | https://ror.org/037zgn354 |
| authorships[11].institutions[0].type | healthcare |
| authorships[11].institutions[0].lineage | https://openalex.org/I2799853436 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | Johns Hopkins Medicine |
| authorships[11].institutions[1].id | https://openalex.org/I145311948 |
| authorships[11].institutions[1].ror | https://ror.org/00za53h95 |
| authorships[11].institutions[1].type | education |
| authorships[11].institutions[1].lineage | https://openalex.org/I145311948 |
| authorships[11].institutions[1].country_code | US |
| authorships[11].institutions[1].display_name | Johns Hopkins University |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Scott M. Blackman |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA |
| authorships[12].author.id | https://openalex.org/A5064174809 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-9647-0861 |
| authorships[12].author.display_name | Michael J. Bamshad |
| authorships[12].countries | US |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[12].affiliations[0].raw_affiliation_string | Department of Pediatrics, University of Washington, Seattle, WA 98105, USA |
| authorships[12].affiliations[1].institution_ids | https://openalex.org/I201448701 |
| authorships[12].affiliations[1].raw_affiliation_string | Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA |
| authorships[12].institutions[0].id | https://openalex.org/I201448701 |
| authorships[12].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[12].institutions[0].type | education |
| authorships[12].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[12].institutions[0].country_code | US |
| authorships[12].institutions[0].display_name | University of Washington |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Michael J. Bamshad |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA, Department of Pediatrics, University of Washington, Seattle, WA 98105, USA |
| authorships[13].author.id | https://openalex.org/A5033623131 |
| authorships[13].author.orcid | |
| authorships[13].author.display_name | Ronald L. Gibson |
| authorships[13].countries | US |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[13].affiliations[0].raw_affiliation_string | Department of Pediatrics, University of Washington, Seattle, WA 98105, USA |
| authorships[13].institutions[0].id | https://openalex.org/I201448701 |
| authorships[13].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[13].institutions[0].type | education |
| authorships[13].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[13].institutions[0].country_code | US |
| authorships[13].institutions[0].display_name | University of Washington |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Ronald L. Gibson |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Department of Pediatrics, University of Washington, Seattle, WA 98105, USA |
| authorships[14].author.id | https://openalex.org/A5066829790 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-8250-8590 |
| authorships[14].author.display_name | Garry R. Cutting |
| authorships[14].countries | US |
| authorships[14].affiliations[0].institution_ids | https://openalex.org/I145311948, https://openalex.org/I2799853436 |
| authorships[14].affiliations[0].raw_affiliation_string | Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA |
| authorships[14].institutions[0].id | https://openalex.org/I2799853436 |
| authorships[14].institutions[0].ror | https://ror.org/037zgn354 |
| authorships[14].institutions[0].type | healthcare |
| authorships[14].institutions[0].lineage | https://openalex.org/I2799853436 |
| authorships[14].institutions[0].country_code | US |
| authorships[14].institutions[0].display_name | Johns Hopkins Medicine |
| authorships[14].institutions[1].id | https://openalex.org/I145311948 |
| authorships[14].institutions[1].ror | https://ror.org/00za53h95 |
| authorships[14].institutions[1].type | education |
| authorships[14].institutions[1].lineage | https://openalex.org/I145311948 |
| authorships[14].institutions[1].country_code | US |
| authorships[14].institutions[1].display_name | Johns Hopkins University |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Garry R. Cutting |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA |
| authorships[15].author.id | https://openalex.org/A5055982974 |
| authorships[15].author.orcid | https://orcid.org/0000-0002-4672-5969 |
| authorships[15].author.display_name | Michael R. Knowles |
| authorships[15].countries | US |
| authorships[15].affiliations[0].institution_ids | https://openalex.org/I114027177, https://openalex.org/I4210101049 |
| authorships[15].affiliations[0].raw_affiliation_string | Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[15].institutions[0].id | https://openalex.org/I4210101049 |
| authorships[15].institutions[0].ror | https://ror.org/016978714 |
| authorships[15].institutions[0].type | healthcare |
| authorships[15].institutions[0].lineage | https://openalex.org/I4210101049 |
| authorships[15].institutions[0].country_code | US |
| authorships[15].institutions[0].display_name | Lung Institute |
| authorships[15].institutions[1].id | https://openalex.org/I114027177 |
| authorships[15].institutions[1].ror | https://ror.org/0130frc33 |
| authorships[15].institutions[1].type | education |
| authorships[15].institutions[1].lineage | https://openalex.org/I114027177 |
| authorships[15].institutions[1].country_code | US |
| authorships[15].institutions[1].display_name | University of North Carolina at Chapel Hill |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Michael R. Knowles |
| authorships[15].is_corresponding | False |
| authorships[15].raw_affiliation_strings | Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[16].author.id | https://openalex.org/A5075221740 |
| authorships[16].author.orcid | https://orcid.org/0000-0001-5249-4151 |
| authorships[16].author.display_name | Daniel R. Schrider |
| authorships[16].countries | US |
| authorships[16].affiliations[0].institution_ids | https://openalex.org/I114027177 |
| authorships[16].affiliations[0].raw_affiliation_string | Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[16].institutions[0].id | https://openalex.org/I114027177 |
| authorships[16].institutions[0].ror | https://ror.org/0130frc33 |
| authorships[16].institutions[0].type | education |
| authorships[16].institutions[0].lineage | https://openalex.org/I114027177 |
| authorships[16].institutions[0].country_code | US |
| authorships[16].institutions[0].display_name | University of North Carolina at Chapel Hill |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | Daniel R. Schrider |
| authorships[16].is_corresponding | False |
| authorships[16].raw_affiliation_strings | Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[17].author.id | https://openalex.org/A5034697802 |
| authorships[17].author.orcid | https://orcid.org/0000-0002-5918-8947 |
| authorships[17].author.display_name | Christian Fuchsberger |
| authorships[17].countries | IT |
| authorships[17].affiliations[0].institution_ids | https://openalex.org/I1319360392, https://openalex.org/I4210118299 |
| authorships[17].affiliations[0].raw_affiliation_string | Institute for Biomedicine, Eurac Research (affiliated with the University of Lübeck), Bolzano, Italy |
| authorships[17].institutions[0].id | https://openalex.org/I1319360392 |
| authorships[17].institutions[0].ror | https://ror.org/01xt1w755 |
| authorships[17].institutions[0].type | nonprofit |
| authorships[17].institutions[0].lineage | https://openalex.org/I1319360392 |
| authorships[17].institutions[0].country_code | IT |
| authorships[17].institutions[0].display_name | Eurac Research |
| authorships[17].institutions[1].id | https://openalex.org/I4210118299 |
| authorships[17].institutions[1].ror | https://ror.org/02hsggv49 |
| authorships[17].institutions[1].type | facility |
| authorships[17].institutions[1].lineage | https://openalex.org/I1319360392, https://openalex.org/I4210118299 |
| authorships[17].institutions[1].country_code | IT |
| authorships[17].institutions[1].display_name | Institute for Biomedicine |
| authorships[17].author_position | middle |
| authorships[17].raw_author_name | Christian Fuchsberger |
| authorships[17].is_corresponding | True |
| authorships[17].raw_affiliation_strings | Institute for Biomedicine, Eurac Research (affiliated with the University of Lübeck), Bolzano, Italy |
| authorships[18].author.id | https://openalex.org/A5100369226 |
| authorships[18].author.orcid | https://orcid.org/0000-0002-9275-4189 |
| authorships[18].author.display_name | Yun Li |
| authorships[18].countries | US |
| authorships[18].affiliations[0].institution_ids | https://openalex.org/I114027177 |
| authorships[18].affiliations[0].raw_affiliation_string | Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[18].affiliations[1].institution_ids | https://openalex.org/I114027177 |
| authorships[18].affiliations[1].raw_affiliation_string | Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| authorships[18].institutions[0].id | https://openalex.org/I114027177 |
| authorships[18].institutions[0].ror | https://ror.org/0130frc33 |
| authorships[18].institutions[0].type | education |
| authorships[18].institutions[0].lineage | https://openalex.org/I114027177 |
| authorships[18].institutions[0].country_code | US |
| authorships[18].institutions[0].display_name | University of North Carolina at Chapel Hill |
| authorships[18].author_position | last |
| authorships[18].raw_author_name | Yun Li |
| authorships[18].is_corresponding | True |
| authorships[18].raw_affiliation_strings | Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA, Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://www.cell.com/article/S0002929722004128/pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MagicalRsq: Machine-learning-based genotype imputation quality calibration |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10665 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9952999949455261 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Cystic Fibrosis Research Advances |
| related_works | https://openalex.org/W2093932542, https://openalex.org/W4402567428, https://openalex.org/W2043256480, https://openalex.org/W2172231381, https://openalex.org/W1983406990, https://openalex.org/W2106924416, https://openalex.org/W2772505697, https://openalex.org/W3083501552, https://openalex.org/W2400191746, https://openalex.org/W2484239316 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1016/j.ajhg.2022.09.009 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S134425043 |
| best_oa_location.source.issn | 0002-9297, 1537-6605 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0002-9297 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | The American Journal of Human Genetics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | http://www.cell.com/article/S0002929722004128/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The American Journal of Human Genetics |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ajhg.2022.09.009 |
| primary_location.id | doi:10.1016/j.ajhg.2022.09.009 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S134425043 |
| primary_location.source.issn | 0002-9297, 1537-6605 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0002-9297 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | The American Journal of Human Genetics |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | other-oa |
| primary_location.pdf_url | http://www.cell.com/article/S0002929722004128/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The American Journal of Human Genetics |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ajhg.2022.09.009 |
| publication_date | 2022-10-04 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3126160703, https://openalex.org/W6805525822, https://openalex.org/W2996024184, https://openalex.org/W3191508265, https://openalex.org/W2119067354, https://openalex.org/W6635919954, https://openalex.org/W2945053782, https://openalex.org/W2026884584, https://openalex.org/W2510973425, https://openalex.org/W2952113787, https://openalex.org/W2087036932, https://openalex.org/W4240204556, https://openalex.org/W2152867256, https://openalex.org/W2163705275, https://openalex.org/W2056155495, https://openalex.org/W1803035418, https://openalex.org/W6910681941, https://openalex.org/W2024365856, https://openalex.org/W2557981253, https://openalex.org/W3207912190, https://openalex.org/W2588003345, https://openalex.org/W2787902098, https://openalex.org/W2616922646, https://openalex.org/W2790808809, https://openalex.org/W2166501262, https://openalex.org/W2804307951, https://openalex.org/W2950732129, https://openalex.org/W1984390786, https://openalex.org/W2157149092, https://openalex.org/W2140784970, https://openalex.org/W2127178674, https://openalex.org/W2140449543, https://openalex.org/W2127864194, https://openalex.org/W2151061572, https://openalex.org/W2914286455, https://openalex.org/W4225286463, https://openalex.org/W4214844850, https://openalex.org/W2130593768, https://openalex.org/W2336227533, https://openalex.org/W2895486342, https://openalex.org/W3094550675, https://openalex.org/W2529241974, https://openalex.org/W3081528139, https://openalex.org/W3082575318, https://openalex.org/W4280552086, https://openalex.org/W4220951585, https://openalex.org/W1966644930, https://openalex.org/W2168718259, https://openalex.org/W2086995400, https://openalex.org/W2132752562, https://openalex.org/W6770666637, https://openalex.org/W6798473490, https://openalex.org/W2883210850, https://openalex.org/W4225716713, https://openalex.org/W4200461817, https://openalex.org/W1604845156 |
| referenced_works_count | 56 |
| abstract_inverted_index.a | 27, 80, 93 |
| abstract_inverted_index.To | 20 |
| abstract_inverted_index.UK | 114 |
| abstract_inverted_index.We | 135 |
| abstract_inverted_index.an | 171, 221 |
| abstract_inverted_index.as | 67, 220 |
| abstract_inverted_index.be | 56 |
| abstract_inverted_index.by | 212, 231 |
| abstract_inverted_index.in | 147 |
| abstract_inverted_index.is | 3, 13, 37, 70, 241 |
| abstract_inverted_index.no | 176 |
| abstract_inverted_index.of | 29, 125, 192, 208 |
| abstract_inverted_index.on | 244 |
| abstract_inverted_index.or | 31, 46 |
| abstract_inverted_index.to | 39, 91, 121, 128, 170, 186 |
| abstract_inverted_index.we | 77, 117 |
| abstract_inverted_index.1.4 | 193 |
| abstract_inverted_index.18k | 199 |
| abstract_inverted_index.For | 159 |
| abstract_inverted_index.Rsq | 130, 146 |
| abstract_inverted_index.WGS | 100 |
| abstract_inverted_index.all | 53 |
| abstract_inverted_index.and | 34, 59, 87, 109, 155, 198, 226 |
| abstract_inverted_index.but | 12, 178 |
| abstract_inverted_index.can | 55, 218 |
| abstract_inverted_index.for | 7, 17, 42, 73, 131, 152 |
| abstract_inverted_index.net | 190, 203 |
| abstract_inverted_index.not | 52 |
| abstract_inverted_index.the | 4, 43, 60, 103, 123 |
| abstract_inverted_index.117k | 196 |
| abstract_inverted_index.CFGP | 167 |
| abstract_inverted_index.Rsq, | 69, 188 |
| abstract_inverted_index.Rsq. | 216 |
| abstract_inverted_index.both | 153 |
| abstract_inverted_index.data | 101, 112 |
| abstract_inverted_index.from | 102, 113, 165, 181, 236 |
| abstract_inverted_index.gold | 5 |
| abstract_inverted_index.many | 23 |
| abstract_inverted_index.only | 26 |
| abstract_inverted_index.over | 214 |
| abstract_inverted_index.than | 144 |
| abstract_inverted_index.that | 83, 137 |
| abstract_inverted_index.true | 142 |
| abstract_inverted_index.used | 38 |
| abstract_inverted_index.well | 57 |
| abstract_inverted_index.were | 205 |
| abstract_inverted_index.when | 161 |
| abstract_inverted_index.will | 227 |
| abstract_inverted_index.with | 141, 175 |
| abstract_inverted_index.(WGS) | 2 |
| abstract_inverted_index.1,992 | 166 |
| abstract_inverted_index.3,103 | 173 |
| abstract_inverted_index.Here, | 76 |
| abstract_inverted_index.array | 182 |
| abstract_inverted_index.data. | 50 |
| abstract_inverted_index.every | 149 |
| abstract_inverted_index.found | 136 |
| abstract_inverted_index.fully | 8 |
| abstract_inverted_index.gains | 191, 204 |
| abstract_inverted_index.infer | 40 |
| abstract_inverted_index.large | 18 |
| abstract_inverted_index.rare, | 195 |
| abstract_inverted_index.serve | 219 |
| abstract_inverted_index.still | 14 |
| abstract_inverted_index.those | 237 |
| abstract_inverted_index.where | 202 |
| abstract_inverted_index.(UKB), | 116 |
| abstract_inverted_index.Cystic | 104 |
| abstract_inverted_index.Genome | 106 |
| abstract_inverted_index.TOPMed | 179 |
| abstract_inverted_index.aligns | 139 |
| abstract_inverted_index.almost | 148 |
| abstract_inverted_index.better | 94, 140, 232 |
| abstract_inverted_index.common | 200 |
| abstract_inverted_index.costs, | 22 |
| abstract_inverted_index.freely | 242 |
| abstract_inverted_index.gained | 206 |
| abstract_inverted_index.method | 82 |
| abstract_inverted_index.metric | 225 |
| abstract_inverted_index.models | 163 |
| abstract_inverted_index.poorly | 71, 238 |
| abstract_inverted_index.reduce | 21 |
| abstract_inverted_index.subset | 28 |
| abstract_inverted_index.(CFGP), | 108 |
| abstract_inverted_index.African | 156 |
| abstract_inverted_index.BioBank | 115 |
| abstract_inverted_index.GitHub. | 245 |
| abstract_inverted_index.Project | 107 |
| abstract_inverted_index.benefit | 228 |
| abstract_inverted_index.current | 61 |
| abstract_inverted_index.denoted | 66 |
| abstract_inverted_index.genetic | 10 |
| abstract_inverted_index.genomic | 32 |
| abstract_inverted_index.metric, | 65 |
| abstract_inverted_index.metric. | 98 |
| abstract_inverted_index.million | 194 |
| abstract_inverted_index.numbers | 207 |
| abstract_inverted_index.propose | 78 |
| abstract_inverted_index.provide | 92 |
| abstract_inverted_index.quality | 64, 97, 224 |
| abstract_inverted_index.regions | 47 |
| abstract_inverted_index.samples | 169, 174 |
| abstract_inverted_index.studies | 24 |
| abstract_inverted_index.trained | 164 |
| abstract_inverted_index.without | 48 |
| abstract_inverted_index.European | 154 |
| abstract_inverted_index.Fibrosis | 105 |
| abstract_inverted_index.However, | 51 |
| abstract_inverted_index.achieved | 189 |
| abstract_inverted_index.analysis | 230 |
| abstract_inverted_index.ancestry | 157 |
| abstract_inverted_index.applying | 162 |
| abstract_inverted_index.compared | 127, 185 |
| abstract_inverted_index.evaluate | 122 |
| abstract_inverted_index.example, | 160 |
| abstract_inverted_index.genetics | 89 |
| abstract_inverted_index.genotype | 35 |
| abstract_inverted_index.improved | 222 |
| abstract_inverted_index.imputed, | 58 |
| abstract_inverted_index.imputed. | 239 |
| abstract_inverted_index.regions, | 33 |
| abstract_inverted_index.samples. | 19, 158 |
| abstract_inverted_index.sequence | 25, 111 |
| abstract_inverted_index.standard | 6, 68, 129, 145, 187, 215 |
| abstract_inverted_index.studies. | 134 |
| abstract_inverted_index.variants | 54, 211, 235 |
| abstract_inverted_index.available | 243 |
| abstract_inverted_index.correctly | 209 |
| abstract_inverted_index.expensive | 16 |
| abstract_inverted_index.genotypes | 41 |
| abstract_inverted_index.partially | 132 |
| abstract_inverted_index.performed | 118 |
| abstract_inverted_index.remaining | 44 |
| abstract_inverted_index.sequenced | 133, 168 |
| abstract_inverted_index.situation | 150 |
| abstract_inverted_index.variants, | 201 |
| abstract_inverted_index.variants. | 75 |
| abstract_inverted_index.variation | 11 |
| abstract_inverted_index.Leveraging | 99 |
| abstract_inverted_index.MagicalRsq | 126, 138, 213, 217, 240 |
| abstract_inverted_index.calibrated | 72, 95 |
| abstract_inverted_index.downstream | 229 |
| abstract_inverted_index.evaluated, | 151 |
| abstract_inverted_index.genotypes, | 183 |
| abstract_inverted_index.imputation | 36, 63, 86, 96, 180 |
| abstract_inverted_index.integrates | 84 |
| abstract_inverted_index.population | 88 |
| abstract_inverted_index.sequencing | 1, 49, 177 |
| abstract_inverted_index.MagicalRsq, | 79, 184 |
| abstract_inverted_index.experiments | 120 |
| abstract_inverted_index.independent | 172 |
| abstract_inverted_index.individuals | 30, 45 |
| abstract_inverted_index.performance | 124 |
| abstract_inverted_index.statistics, | 90 |
| abstract_inverted_index.whole-exome | 110 |
| abstract_inverted_index.Whole-genome | 0 |
| abstract_inverted_index.well-imputed | 234 |
| abstract_inverted_index.R<sup>2</sup> | 143 |
| abstract_inverted_index.comprehensive | 119 |
| abstract_inverted_index.distinguished | 210 |
| abstract_inverted_index.prohibitively | 15 |
| abstract_inverted_index.variant-level | 85 |
| abstract_inverted_index.characterizing | 9 |
| abstract_inverted_index.distinguishing | 233 |
| abstract_inverted_index.low-frequency, | 197 |
| abstract_inverted_index.lower-frequency | 74 |
| abstract_inverted_index.post-imputation | 223 |
| abstract_inverted_index.state-of-the-art | 62 |
| abstract_inverted_index.machine-learning-based | 81 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5100369226, https://openalex.org/A5034697802 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 19 |
| corresponding_institution_ids | https://openalex.org/I114027177, https://openalex.org/I1319360392, https://openalex.org/I4210118299 |
| citation_normalized_percentile.value | 0.91475805 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |