Making invisible excited state protein structures visible by combining NMR and machine learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17726227
This deposition contains the data used for the preprint/publication by the same title. The CPMG and CEST directories contain the CPMG and CEST data for individual probes (ChemEx input format) that are used in the analysis presented in the paper. The TALOS directory contains files including the chemical shifts of probes in the region of interest in various states (ground state, ES1, ES2) for Q54V pro-IL-18 as well as ES2 for WT pro-IL-18 in the TALOS input format. The NOESYs directory contains the Q54V and WT methyl-methyl CCH NOESY spectra in nmrPipe format. The AlphaFlow... directories contain the AlphaFlow ensembles (30,000 structures each) for Q54V pro-IL-18 (residues 45-60 masked in template), WT pro-IL-18 (residues 45-60 masked in template), and WT pro-IL-18 with no masking of the template.
Related Topics
- Type
- dataset
- Landing Page
- https://doi.org/10.5281/zenodo.17726227
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7106816201
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106816201Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17726227Digital Object Identifier
- Title
-
Making invisible excited state protein structures visible by combining NMR and machine learningWork title
- Type
-
datasetOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-26Full publication date if available
- Authors
-
Bonin, Jeffrey, Lee, Jin Sub, Liu, Zi Hao, Kim, Philip, Kay LewisList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17726227Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17726227Direct OA link when available
- Concepts
-
Masking (illustration), Directory, Excited state, Chemistry, Artificial intelligence, Spectral line, State (computer science), Computer science, Two-dimensional nuclear magnetic resonance spectroscopy, Crystallography, Data mining, Chemical shift, NMR spectra database, Pattern recognition (psychology), Information retrieval, Machine learning, Nuclear magnetic resonance spectroscopy, Physics, Training setTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7106816201 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17726227 |
| ids.doi | https://doi.org/10.5281/zenodo.17726227 |
| ids.openalex | https://openalex.org/W7106816201 |
| fwci | |
| type | dataset |
| title | Making invisible excited state protein structures visible by combining NMR and machine learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777402240 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7400791645050049 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6783436 |
| concepts[0].display_name | Masking (illustration) |
| concepts[1].id | https://openalex.org/C2777683733 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6369366645812988 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q201456 |
| concepts[1].display_name | Directory |
| concepts[2].id | https://openalex.org/C181500209 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5649715065956116 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q215328 |
| concepts[2].display_name | Excited state |
| concepts[3].id | https://openalex.org/C185592680 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5422815084457397 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[3].display_name | Chemistry |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4811883568763733 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C4839761 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42780303955078125 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q212111 |
| concepts[5].display_name | Spectral line |
| concepts[6].id | https://openalex.org/C48103436 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42526763677597046 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[6].display_name | State (computer science) |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.41699036955833435 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C19549132 |
| concepts[8].level | 2 |
| concepts[8].score | 0.39976879954338074 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11141463 |
| concepts[8].display_name | Two-dimensional nuclear magnetic resonance spectroscopy |
| concepts[9].id | https://openalex.org/C8010536 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3281458020210266 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q160398 |
| concepts[9].display_name | Crystallography |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.31923454999923706 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C111429119 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3085736632347107 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q899127 |
| concepts[11].display_name | Chemical shift |
| concepts[12].id | https://openalex.org/C67787023 |
| concepts[12].level | 3 |
| concepts[12].score | 0.3057137429714203 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q6954755 |
| concepts[12].display_name | NMR spectra database |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3045385479927063 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C23123220 |
| concepts[14].level | 1 |
| concepts[14].score | 0.29031333327293396 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[14].display_name | Information retrieval |
| concepts[15].id | https://openalex.org/C119857082 |
| concepts[15].level | 1 |
| concepts[15].score | 0.269103467464447 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[15].display_name | Machine learning |
| concepts[16].id | https://openalex.org/C66974803 |
| concepts[16].level | 2 |
| concepts[16].score | 0.2573700249195099 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q10359898 |
| concepts[16].display_name | Nuclear magnetic resonance spectroscopy |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.25302624702453613 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C51632099 |
| concepts[18].level | 2 |
| concepts[18].score | 0.2508206069469452 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[18].display_name | Training set |
| keywords[0].id | https://openalex.org/keywords/masking |
| keywords[0].score | 0.7400791645050049 |
| keywords[0].display_name | Masking (illustration) |
| keywords[1].id | https://openalex.org/keywords/directory |
| keywords[1].score | 0.6369366645812988 |
| keywords[1].display_name | Directory |
| keywords[2].id | https://openalex.org/keywords/excited-state |
| keywords[2].score | 0.5649715065956116 |
| keywords[2].display_name | Excited state |
| keywords[3].id | https://openalex.org/keywords/spectral-line |
| keywords[3].score | 0.42780303955078125 |
| keywords[3].display_name | Spectral line |
| keywords[4].id | https://openalex.org/keywords/state |
| keywords[4].score | 0.42526763677597046 |
| keywords[4].display_name | State (computer science) |
| keywords[5].id | https://openalex.org/keywords/two-dimensional-nuclear-magnetic-resonance-spectroscopy |
| keywords[5].score | 0.39976879954338074 |
| keywords[5].display_name | Two-dimensional nuclear magnetic resonance spectroscopy |
| language | |
| locations[0].id | doi:10.5281/zenodo.17726227 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17726227 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Bonin, Jeffrey |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I185261750 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Toronto |
| authorships[0].institutions[0].id | https://openalex.org/I185261750 |
| authorships[0].institutions[0].ror | https://ror.org/03dbr7087 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I185261750 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | University of Toronto |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bonin, Jeffrey |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | University of Toronto |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Lee, Jin Sub |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I185261750 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Toronto |
| authorships[1].institutions[0].id | https://openalex.org/I185261750 |
| authorships[1].institutions[0].ror | https://ror.org/03dbr7087 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I185261750 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of Toronto |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lee, Jin Sub |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Toronto |
| authorships[2].author.id | https://openalex.org/A4281247172 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Liu, Zi Hao |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I185261750 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Toronto |
| authorships[2].institutions[0].id | https://openalex.org/I185261750 |
| authorships[2].institutions[0].ror | https://ror.org/03dbr7087 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I185261750 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | University of Toronto |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Zi Hao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Toronto |
| authorships[3].author.id | https://openalex.org/A2569462124 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Kim, Philip |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I185261750 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Toronto |
| authorships[3].institutions[0].id | https://openalex.org/I185261750 |
| authorships[3].institutions[0].ror | https://ror.org/03dbr7087 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I185261750 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | University of Toronto |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kim, Philip |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Toronto |
| authorships[4].author.id | https://openalex.org/A2505675515 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Kay Lewis |
| authorships[4].countries | CA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I185261750 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Toronto |
| authorships[4].institutions[0].id | https://openalex.org/I185261750 |
| authorships[4].institutions[0].ror | https://ror.org/03dbr7087 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I185261750 |
| authorships[4].institutions[0].country_code | CA |
| authorships[4].institutions[0].display_name | University of Toronto |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Kay, Lewis |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Toronto |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17726227 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-28T00:00:00 |
| display_name | Making invisible excited state protein structures visible by combining NMR and machine learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T02:12:24.556248 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17726227 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17726227 |
| primary_location.id | doi:10.5281/zenodo.17726227 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17726227 |
| publication_date | 2025-11-26 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.WT | 71, 85, 111, 119 |
| abstract_inverted_index.as | 66, 68 |
| abstract_inverted_index.by | 9 |
| abstract_inverted_index.in | 33, 37, 51, 56, 73, 90, 109, 116 |
| abstract_inverted_index.no | 122 |
| abstract_inverted_index.of | 49, 54, 124 |
| abstract_inverted_index.CCH | 87 |
| abstract_inverted_index.ES2 | 69 |
| abstract_inverted_index.The | 13, 40, 78, 93 |
| abstract_inverted_index.and | 15, 21, 84, 118 |
| abstract_inverted_index.are | 31 |
| abstract_inverted_index.for | 6, 24, 63, 70, 103 |
| abstract_inverted_index.the | 3, 7, 10, 19, 34, 38, 46, 52, 74, 82, 97, 125 |
| abstract_inverted_index.CEST | 16, 22 |
| abstract_inverted_index.CPMG | 14, 20 |
| abstract_inverted_index.ES1, | 61 |
| abstract_inverted_index.ES2) | 62 |
| abstract_inverted_index.Q54V | 64, 83, 104 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.data | 4, 23 |
| abstract_inverted_index.same | 11 |
| abstract_inverted_index.that | 30 |
| abstract_inverted_index.used | 5, 32 |
| abstract_inverted_index.well | 67 |
| abstract_inverted_index.with | 121 |
| abstract_inverted_index.45-60 | 107, 114 |
| abstract_inverted_index.NOESY | 88 |
| abstract_inverted_index.TALOS | 41, 75 |
| abstract_inverted_index.each) | 102 |
| abstract_inverted_index.files | 44 |
| abstract_inverted_index.input | 28, 76 |
| abstract_inverted_index.NOESYs | 79 |
| abstract_inverted_index.masked | 108, 115 |
| abstract_inverted_index.paper. | 39 |
| abstract_inverted_index.probes | 26, 50 |
| abstract_inverted_index.region | 53 |
| abstract_inverted_index.shifts | 48 |
| abstract_inverted_index.state, | 60 |
| abstract_inverted_index.states | 58 |
| abstract_inverted_index.title. | 12 |
| abstract_inverted_index.(30,000 | 100 |
| abstract_inverted_index.(ChemEx | 27 |
| abstract_inverted_index.(ground | 59 |
| abstract_inverted_index.contain | 18, 96 |
| abstract_inverted_index.format) | 29 |
| abstract_inverted_index.format. | 77, 92 |
| abstract_inverted_index.masking | 123 |
| abstract_inverted_index.nmrPipe | 91 |
| abstract_inverted_index.spectra | 89 |
| abstract_inverted_index.various | 57 |
| abstract_inverted_index.analysis | 35 |
| abstract_inverted_index.chemical | 47 |
| abstract_inverted_index.contains | 2, 43, 81 |
| abstract_inverted_index.interest | 55 |
| abstract_inverted_index.(residues | 106, 113 |
| abstract_inverted_index.AlphaFlow | 98 |
| abstract_inverted_index.directory | 42, 80 |
| abstract_inverted_index.ensembles | 99 |
| abstract_inverted_index.including | 45 |
| abstract_inverted_index.presented | 36 |
| abstract_inverted_index.pro-IL-18 | 65, 72, 105, 112, 120 |
| abstract_inverted_index.template. | 126 |
| abstract_inverted_index.deposition | 1 |
| abstract_inverted_index.individual | 25 |
| abstract_inverted_index.structures | 101 |
| abstract_inverted_index.template), | 110, 117 |
| abstract_inverted_index.directories | 17, 95 |
| abstract_inverted_index.AlphaFlow... | 94 |
| abstract_inverted_index.methyl-methyl | 86 |
| abstract_inverted_index.preprint/publication | 8 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |