Making Phase-Picking Neural Networks More Consistent and Interpretable Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1785/0320230054
Improving the interpretability of phase-picking neural networks remains an important task to facilitate their deployment to routine, real-time seismic monitoring. The popular phase-picking neural networks published in the literature lack interpretability because their output prediction scores do not necessarily correspond with the reliability of phase picks and can even be highly inconsistent depending on how we window the waveform data. Here, we show that systematically shifting the waveforms during training and using an antialiasing filter within the neural network architecture can substantially improve the consistency of the output prediction scores and can even make them scale with the signal-to-noise ratios of the waveforms. We demonstrate the improvements by applying these approaches to a commonly used phase-picking neural network architecture and using waveform data from the 2019 Ridgecrest earthquake sequence.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1785/0320230054
- https://pubs.geoscienceworld.org/ssa/tsr/article-pdf/4/1/72/6284745/tsr-2023054.1.pdf
- OA Status
- diamond
- Cited By
- 3
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392523162
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392523162Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1785/0320230054Digital Object Identifier
- Title
-
Making Phase-Picking Neural Networks More Consistent and InterpretableWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Yongsoo Park, Brent Delbridge, D. R. ShellyList of authors in order
- Landing page
-
https://doi.org/10.1785/0320230054Publisher landing page
- PDF URL
-
https://pubs.geoscienceworld.org/ssa/tsr/article-pdf/4/1/72/6284745/tsr-2023054.1.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://pubs.geoscienceworld.org/ssa/tsr/article-pdf/4/1/72/6284745/tsr-2023054.1.pdfDirect OA link when available
- Concepts
-
Interpretability, Computer science, Waveform, Artificial neural network, Filter (signal processing), Artificial intelligence, Reliability (semiconductor), Consistency (knowledge bases), Machine learning, Task (project management), Phase (matter), SIGNAL (programming language), Data mining, Pattern recognition (psychology), Engineering, Computer vision, Power (physics), Telecommunications, Physics, Organic chemistry, Programming language, Chemistry, Radar, Systems engineering, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392523162 |
|---|---|
| doi | https://doi.org/10.1785/0320230054 |
| ids.doi | https://doi.org/10.1785/0320230054 |
| ids.openalex | https://openalex.org/W4392523162 |
| fwci | 1.91633565 |
| type | article |
| title | Making Phase-Picking Neural Networks More Consistent and Interpretable |
| biblio.issue | 1 |
| biblio.volume | 4 |
| biblio.last_page | 80 |
| biblio.first_page | 72 |
| topics[0].id | https://openalex.org/T13018 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Seismology and Earthquake Studies |
| topics[1].id | https://openalex.org/T11757 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9965000152587891 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1908 |
| topics[1].subfield.display_name | Geophysics |
| topics[1].display_name | Seismic Waves and Analysis |
| topics[2].id | https://openalex.org/T10110 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9955000281333923 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1908 |
| topics[2].subfield.display_name | Geophysics |
| topics[2].display_name | earthquake and tectonic studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9685772657394409 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7306032776832581 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C197424946 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7238401174545288 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1165717 |
| concepts[2].display_name | Waveform |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7137261033058167 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C106131492 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5495860576629639 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[4].display_name | Filter (signal processing) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5242124795913696 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C43214815 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5137775540351868 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7310987 |
| concepts[6].display_name | Reliability (semiconductor) |
| concepts[7].id | https://openalex.org/C2776436953 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47433939576148987 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[7].display_name | Consistency (knowledge bases) |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.46874693036079407 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C2780451532 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46734529733657837 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[9].display_name | Task (project management) |
| concepts[10].id | https://openalex.org/C44280652 |
| concepts[10].level | 2 |
| concepts[10].score | 0.44306427240371704 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q104837 |
| concepts[10].display_name | Phase (matter) |
| concepts[11].id | https://openalex.org/C2779843651 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42204350233078003 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[11].display_name | SIGNAL (programming language) |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3756556808948517 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3396744430065155 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1373593807220459 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C31972630 |
| concepts[15].level | 1 |
| concepts[15].score | 0.09055072069168091 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[15].display_name | Computer vision |
| concepts[16].id | https://openalex.org/C163258240 |
| concepts[16].level | 2 |
| concepts[16].score | 0.08219155669212341 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[16].display_name | Power (physics) |
| concepts[17].id | https://openalex.org/C76155785 |
| concepts[17].level | 1 |
| concepts[17].score | 0.07812738418579102 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[17].display_name | Telecommunications |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C178790620 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[19].display_name | Organic chemistry |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| concepts[21].id | https://openalex.org/C185592680 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[21].display_name | Chemistry |
| concepts[22].id | https://openalex.org/C554190296 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[22].display_name | Radar |
| concepts[23].id | https://openalex.org/C201995342 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[23].display_name | Systems engineering |
| concepts[24].id | https://openalex.org/C62520636 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[24].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.9685772657394409 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7306032776832581 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/waveform |
| keywords[2].score | 0.7238401174545288 |
| keywords[2].display_name | Waveform |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.7137261033058167 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/filter |
| keywords[4].score | 0.5495860576629639 |
| keywords[4].display_name | Filter (signal processing) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5242124795913696 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/reliability |
| keywords[6].score | 0.5137775540351868 |
| keywords[6].display_name | Reliability (semiconductor) |
| keywords[7].id | https://openalex.org/keywords/consistency |
| keywords[7].score | 0.47433939576148987 |
| keywords[7].display_name | Consistency (knowledge bases) |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.46874693036079407 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/task |
| keywords[9].score | 0.46734529733657837 |
| keywords[9].display_name | Task (project management) |
| keywords[10].id | https://openalex.org/keywords/phase |
| keywords[10].score | 0.44306427240371704 |
| keywords[10].display_name | Phase (matter) |
| keywords[11].id | https://openalex.org/keywords/signal |
| keywords[11].score | 0.42204350233078003 |
| keywords[11].display_name | SIGNAL (programming language) |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.3756556808948517 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.3396744430065155 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.1373593807220459 |
| keywords[14].display_name | Engineering |
| keywords[15].id | https://openalex.org/keywords/computer-vision |
| keywords[15].score | 0.09055072069168091 |
| keywords[15].display_name | Computer vision |
| keywords[16].id | https://openalex.org/keywords/power |
| keywords[16].score | 0.08219155669212341 |
| keywords[16].display_name | Power (physics) |
| keywords[17].id | https://openalex.org/keywords/telecommunications |
| keywords[17].score | 0.07812738418579102 |
| keywords[17].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1785/0320230054 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210235748 |
| locations[0].source.issn | 2694-4006 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2694-4006 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The Seismic Record |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://pubs.geoscienceworld.org/ssa/tsr/article-pdf/4/1/72/6284745/tsr-2023054.1.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Seismic Record |
| locations[0].landing_page_url | https://doi.org/10.1785/0320230054 |
| locations[1].id | pmh:oai:doaj.org/article:edf1ec615a854ebab8ee5416b170dff5 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | The Seismic Record, Vol 4, Iss 1, Pp 72-80 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/edf1ec615a854ebab8ee5416b170dff5 |
| locations[2].id | pmh:oai:osti.gov:2329261 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402487 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[2].source.host_organization | https://openalex.org/I139351228 |
| locations[2].source.host_organization_name | Office of Scientific and Technical Information |
| locations[2].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.osti.gov/biblio/2329261 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5071566340 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5466-8004 |
| authorships[0].author.display_name | Yongsoo Park |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1343871089 |
| authorships[0].affiliations[0].raw_affiliation_string | 1National Security Earth Science, Los Alamos National Laboratory, Los Alamos, New Mexico, U.S.A. |
| authorships[0].institutions[0].id | https://openalex.org/I1343871089 |
| authorships[0].institutions[0].ror | https://ror.org/01e41cf67 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I1343871089, https://openalex.org/I198811213, https://openalex.org/I4210120050 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Los Alamos National Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yongsoo Park |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | 1National Security Earth Science, Los Alamos National Laboratory, Los Alamos, New Mexico, U.S.A. |
| authorships[1].author.id | https://openalex.org/A5036466020 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2808-8772 |
| authorships[1].author.display_name | Brent Delbridge |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1343871089 |
| authorships[1].affiliations[0].raw_affiliation_string | 1National Security Earth Science, Los Alamos National Laboratory, Los Alamos, New Mexico, U.S.A. |
| authorships[1].institutions[0].id | https://openalex.org/I1343871089 |
| authorships[1].institutions[0].ror | https://ror.org/01e41cf67 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I1343871089, https://openalex.org/I198811213, https://openalex.org/I4210120050 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Los Alamos National Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Brent G. Delbridge |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | 1National Security Earth Science, Los Alamos National Laboratory, Los Alamos, New Mexico, U.S.A. |
| authorships[2].author.id | https://openalex.org/A5091909223 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2783-5158 |
| authorships[2].author.display_name | D. R. Shelly |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1286329397, https://openalex.org/I4392021177 |
| authorships[2].affiliations[0].raw_affiliation_string | 2U.S. Geological Survey, Geologic Hazards Science Center, Golden, Colorado, U.S.A. |
| authorships[2].institutions[0].id | https://openalex.org/I4392021177 |
| authorships[2].institutions[0].ror | https://ror.org/038x5dh11 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1286329397, https://openalex.org/I1335927249, https://openalex.org/I4392021177 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Geologic Hazards Science Center |
| authorships[2].institutions[1].id | https://openalex.org/I1286329397 |
| authorships[2].institutions[1].ror | https://ror.org/035a68863 |
| authorships[2].institutions[1].type | government |
| authorships[2].institutions[1].lineage | https://openalex.org/I1286329397, https://openalex.org/I1335927249 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | United States Geological Survey |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | David R. Shelly |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | 2U.S. Geological Survey, Geologic Hazards Science Center, Golden, Colorado, U.S.A. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pubs.geoscienceworld.org/ssa/tsr/article-pdf/4/1/72/6284745/tsr-2023054.1.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Making Phase-Picking Neural Networks More Consistent and Interpretable |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13018 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Seismology and Earthquake Studies |
| related_works | https://openalex.org/W2905433371, https://openalex.org/W4390569940, https://openalex.org/W2888392564, https://openalex.org/W4361193272, https://openalex.org/W4310278675, https://openalex.org/W4388422664, https://openalex.org/W2806259446, https://openalex.org/W2963326959, https://openalex.org/W4312407344, https://openalex.org/W2348795485 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1785/0320230054 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210235748 |
| best_oa_location.source.issn | 2694-4006 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2694-4006 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The Seismic Record |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://pubs.geoscienceworld.org/ssa/tsr/article-pdf/4/1/72/6284745/tsr-2023054.1.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The Seismic Record |
| best_oa_location.landing_page_url | https://doi.org/10.1785/0320230054 |
| primary_location.id | doi:10.1785/0320230054 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210235748 |
| primary_location.source.issn | 2694-4006 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2694-4006 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The Seismic Record |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://pubs.geoscienceworld.org/ssa/tsr/article-pdf/4/1/72/6284745/tsr-2023054.1.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Seismic Record |
| primary_location.landing_page_url | https://doi.org/10.1785/0320230054 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4291222803, https://openalex.org/W3194491437, https://openalex.org/W6631190155, https://openalex.org/W3005579381, https://openalex.org/W3047855151, https://openalex.org/W4292730435, https://openalex.org/W4323838273, https://openalex.org/W3012481116, https://openalex.org/W4389137414, https://openalex.org/W1901129140, https://openalex.org/W2798961812, https://openalex.org/W4379746034, https://openalex.org/W3002894821, https://openalex.org/W3100137627, https://openalex.org/W4389639665, https://openalex.org/W3157951468, https://openalex.org/W4312115129, https://openalex.org/W4385986684, https://openalex.org/W2909899137, https://openalex.org/W4383373734, https://openalex.org/W6758857762, https://openalex.org/W2937917695, https://openalex.org/W2794417179, https://openalex.org/W2913314773, https://openalex.org/W1522301498, https://openalex.org/W3121383166 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 113 |
| abstract_inverted_index.We | 104 |
| abstract_inverted_index.an | 9, 73 |
| abstract_inverted_index.be | 50 |
| abstract_inverted_index.by | 108 |
| abstract_inverted_index.do | 37 |
| abstract_inverted_index.in | 27 |
| abstract_inverted_index.of | 4, 44, 86, 101 |
| abstract_inverted_index.on | 54 |
| abstract_inverted_index.to | 12, 16, 112 |
| abstract_inverted_index.we | 56, 62 |
| abstract_inverted_index.The | 21 |
| abstract_inverted_index.and | 47, 71, 91, 120 |
| abstract_inverted_index.can | 48, 81, 92 |
| abstract_inverted_index.how | 55 |
| abstract_inverted_index.not | 38 |
| abstract_inverted_index.the | 2, 28, 42, 58, 67, 77, 84, 87, 98, 102, 106, 125 |
| abstract_inverted_index.2019 | 126 |
| abstract_inverted_index.data | 123 |
| abstract_inverted_index.even | 49, 93 |
| abstract_inverted_index.from | 124 |
| abstract_inverted_index.lack | 30 |
| abstract_inverted_index.make | 94 |
| abstract_inverted_index.show | 63 |
| abstract_inverted_index.task | 11 |
| abstract_inverted_index.that | 64 |
| abstract_inverted_index.them | 95 |
| abstract_inverted_index.used | 115 |
| abstract_inverted_index.with | 41, 97 |
| abstract_inverted_index.Here, | 61 |
| abstract_inverted_index.data. | 60 |
| abstract_inverted_index.phase | 45 |
| abstract_inverted_index.picks | 46 |
| abstract_inverted_index.scale | 96 |
| abstract_inverted_index.their | 14, 33 |
| abstract_inverted_index.these | 110 |
| abstract_inverted_index.using | 72, 121 |
| abstract_inverted_index.during | 69 |
| abstract_inverted_index.filter | 75 |
| abstract_inverted_index.highly | 51 |
| abstract_inverted_index.neural | 6, 24, 78, 117 |
| abstract_inverted_index.output | 34, 88 |
| abstract_inverted_index.ratios | 100 |
| abstract_inverted_index.scores | 36, 90 |
| abstract_inverted_index.window | 57 |
| abstract_inverted_index.within | 76 |
| abstract_inverted_index.because | 32 |
| abstract_inverted_index.improve | 83 |
| abstract_inverted_index.network | 79, 118 |
| abstract_inverted_index.popular | 22 |
| abstract_inverted_index.remains | 8 |
| abstract_inverted_index.seismic | 19 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.applying | 109 |
| abstract_inverted_index.commonly | 114 |
| abstract_inverted_index.networks | 7, 25 |
| abstract_inverted_index.routine, | 17 |
| abstract_inverted_index.shifting | 66 |
| abstract_inverted_index.training | 70 |
| abstract_inverted_index.waveform | 59, 122 |
| abstract_inverted_index.Improving | 1 |
| abstract_inverted_index.depending | 53 |
| abstract_inverted_index.important | 10 |
| abstract_inverted_index.published | 26 |
| abstract_inverted_index.real-time | 18 |
| abstract_inverted_index.sequence. | 129 |
| abstract_inverted_index.waveforms | 68 |
| abstract_inverted_index.Ridgecrest | 127 |
| abstract_inverted_index.approaches | 111 |
| abstract_inverted_index.correspond | 40 |
| abstract_inverted_index.deployment | 15 |
| abstract_inverted_index.earthquake | 128 |
| abstract_inverted_index.facilitate | 13 |
| abstract_inverted_index.literature | 29 |
| abstract_inverted_index.prediction | 35, 89 |
| abstract_inverted_index.waveforms. | 103 |
| abstract_inverted_index.consistency | 85 |
| abstract_inverted_index.demonstrate | 105 |
| abstract_inverted_index.monitoring. | 20 |
| abstract_inverted_index.necessarily | 39 |
| abstract_inverted_index.reliability | 43 |
| abstract_inverted_index.antialiasing | 74 |
| abstract_inverted_index.architecture | 80, 119 |
| abstract_inverted_index.improvements | 107 |
| abstract_inverted_index.inconsistent | 52 |
| abstract_inverted_index.phase-picking | 5, 23, 116 |
| abstract_inverted_index.substantially | 82 |
| abstract_inverted_index.systematically | 65 |
| abstract_inverted_index.signal-to-noise | 99 |
| abstract_inverted_index.interpretability | 3, 31 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.82802774 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |