Making Reconstruction-based Method Great Again for Video Anomaly Detection Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2301.12048
Anomaly detection in videos is a significant yet challenging problem. Previous approaches based on deep neural networks employ either reconstruction-based or prediction-based approaches. Nevertheless, existing reconstruction-based methods 1) rely on old-fashioned convolutional autoencoders and are poor at modeling temporal dependency; 2) are prone to overfit the training samples, leading to indistinguishable reconstruction errors of normal and abnormal frames during the inference phase. To address such issues, firstly, we get inspiration from transformer and propose ${\textbf S}$patio-${\textbf T}$emporal ${\textbf A}$uto-${\textbf T}$rans-${\textbf E}$ncoder, dubbed as $\textbf{STATE}$, as a new autoencoder model for enhanced consecutive frame reconstruction. Our STATE is equipped with a specifically designed learnable convolutional attention module for efficient temporal learning and reasoning. Secondly, we put forward a novel reconstruction-based input perturbation technique during testing to further differentiate anomalous frames. With the same perturbation magnitude, the testing reconstruction error of the normal frames lowers more than that of the abnormal frames, which contributes to mitigating the overfitting problem of reconstruction. Owing to the high relevance of the frame abnormality and the objects in the frame, we conduct object-level reconstruction using both the raw frame and the corresponding optical flow patches. Finally, the anomaly score is designed based on the combination of the raw and motion reconstruction errors using perturbed inputs. Extensive experiments on benchmark video anomaly detection datasets demonstrate that our approach outperforms previous reconstruction-based methods by a notable margin, and achieves state-of-the-art anomaly detection performance consistently. The code is available at https://github.com/wyzjack/MRMGA4VAD.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2301.12048
- https://arxiv.org/pdf/2301.12048
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4318751378
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4318751378Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2301.12048Digital Object Identifier
- Title
-
Making Reconstruction-based Method Great Again for Video Anomaly DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-28Full publication date if available
- Authors
-
Yizhou Wang, Can Qin, Yue Bai, Yi Xu, Xu Ma, Yun FuList of authors in order
- Landing page
-
https://arxiv.org/abs/2301.12048Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2301.12048Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2301.12048Direct OA link when available
- Concepts
-
Overfitting, Artificial intelligence, Computer science, Anomaly detection, Iterative reconstruction, Pattern recognition (psychology), Convolutional neural network, Computer vision, Deep learning, Algorithm, Artificial neural networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4318751378 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2301.12048 |
| ids.doi | https://doi.org/10.48550/arxiv.2301.12048 |
| ids.openalex | https://openalex.org/W4318751378 |
| fwci | |
| type | preprint |
| title | Making Reconstruction-based Method Great Again for Video Anomaly Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.984000027179718 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T12391 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9729999899864197 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Artificial Immune Systems Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22019652 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6847912073135376 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[0].display_name | Overfitting |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6744388341903687 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6469705104827881 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C739882 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6423956751823425 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[3].display_name | Anomaly detection |
| concepts[4].id | https://openalex.org/C141379421 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5070247650146484 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6094427 |
| concepts[4].display_name | Iterative reconstruction |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4649551808834076 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C81363708 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45529723167419434 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[6].display_name | Convolutional neural network |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4481007754802704 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42121654748916626 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.32851681113243103 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.1980767548084259 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| keywords[0].id | https://openalex.org/keywords/overfitting |
| keywords[0].score | 0.6847912073135376 |
| keywords[0].display_name | Overfitting |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6744388341903687 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6469705104827881 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/anomaly-detection |
| keywords[3].score | 0.6423956751823425 |
| keywords[3].display_name | Anomaly detection |
| keywords[4].id | https://openalex.org/keywords/iterative-reconstruction |
| keywords[4].score | 0.5070247650146484 |
| keywords[4].display_name | Iterative reconstruction |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.4649551808834076 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[6].score | 0.45529723167419434 |
| keywords[6].display_name | Convolutional neural network |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.4481007754802704 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.42121654748916626 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.32851681113243103 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.1980767548084259 |
| keywords[10].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2301.12048 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2301.12048 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2301.12048 |
| locations[1].id | doi:10.48550/arxiv.2301.12048 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2301.12048 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5115580422 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1601-9649 |
| authorships[0].author.display_name | Yizhou Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Yizhou |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5021042598 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0712-5378 |
| authorships[1].author.display_name | Can Qin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qin, Can |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102281154 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yue Bai |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bai, Yue |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100419183 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5768-8235 |
| authorships[3].author.display_name | Yi Xu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xu, Yi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5031836304 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2012-9808 |
| authorships[4].author.display_name | Xu Ma |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ma, Xu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5005819096 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5098-2853 |
| authorships[5].author.display_name | Yun Fu |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Fu, Yun |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2301.12048 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-02-02T00:00:00 |
| display_name | Making Reconstruction-based Method Great Again for Video Anomaly Detection |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W4362597605, https://openalex.org/W3099765033, https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983, https://openalex.org/W3167935049, https://openalex.org/W3029198973 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2301.12048 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2301.12048 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2301.12048 |
| primary_location.id | pmh:oai:arXiv.org:2301.12048 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2301.12048 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2301.12048 |
| publication_date | 2023-01-28 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 85, 99, 116, 226 |
| abstract_inverted_index.1) | 27 |
| abstract_inverted_index.2) | 40 |
| abstract_inverted_index.To | 62 |
| abstract_inverted_index.as | 82, 84 |
| abstract_inverted_index.at | 36, 240 |
| abstract_inverted_index.by | 225 |
| abstract_inverted_index.in | 2, 171 |
| abstract_inverted_index.is | 4, 96, 193, 238 |
| abstract_inverted_index.of | 53, 138, 146, 157, 164, 199 |
| abstract_inverted_index.on | 13, 29, 196, 211 |
| abstract_inverted_index.or | 20 |
| abstract_inverted_index.to | 43, 49, 124, 152, 160 |
| abstract_inverted_index.we | 67, 113, 174 |
| abstract_inverted_index.Our | 94 |
| abstract_inverted_index.The | 236 |
| abstract_inverted_index.and | 33, 55, 72, 110, 168, 183, 202, 229 |
| abstract_inverted_index.are | 34, 41 |
| abstract_inverted_index.for | 89, 106 |
| abstract_inverted_index.get | 68 |
| abstract_inverted_index.new | 86 |
| abstract_inverted_index.our | 219 |
| abstract_inverted_index.put | 114 |
| abstract_inverted_index.raw | 181, 201 |
| abstract_inverted_index.the | 45, 59, 130, 134, 139, 147, 154, 161, 165, 169, 172, 180, 184, 190, 197, 200 |
| abstract_inverted_index.yet | 7 |
| abstract_inverted_index.With | 129 |
| abstract_inverted_index.both | 179 |
| abstract_inverted_index.code | 237 |
| abstract_inverted_index.deep | 14 |
| abstract_inverted_index.flow | 187 |
| abstract_inverted_index.from | 70 |
| abstract_inverted_index.high | 162 |
| abstract_inverted_index.more | 143 |
| abstract_inverted_index.poor | 35 |
| abstract_inverted_index.rely | 28 |
| abstract_inverted_index.same | 131 |
| abstract_inverted_index.such | 64 |
| abstract_inverted_index.than | 144 |
| abstract_inverted_index.that | 145, 218 |
| abstract_inverted_index.with | 98 |
| abstract_inverted_index.Owing | 159 |
| abstract_inverted_index.STATE | 95 |
| abstract_inverted_index.based | 12, 195 |
| abstract_inverted_index.error | 137 |
| abstract_inverted_index.frame | 92, 166, 182 |
| abstract_inverted_index.input | 119 |
| abstract_inverted_index.model | 88 |
| abstract_inverted_index.novel | 117 |
| abstract_inverted_index.prone | 42 |
| abstract_inverted_index.score | 192 |
| abstract_inverted_index.using | 178, 206 |
| abstract_inverted_index.video | 213 |
| abstract_inverted_index.which | 150 |
| abstract_inverted_index.dubbed | 81 |
| abstract_inverted_index.during | 58, 122 |
| abstract_inverted_index.either | 18 |
| abstract_inverted_index.employ | 17 |
| abstract_inverted_index.errors | 52, 205 |
| abstract_inverted_index.frame, | 173 |
| abstract_inverted_index.frames | 57, 141 |
| abstract_inverted_index.lowers | 142 |
| abstract_inverted_index.module | 105 |
| abstract_inverted_index.motion | 203 |
| abstract_inverted_index.neural | 15 |
| abstract_inverted_index.normal | 54, 140 |
| abstract_inverted_index.phase. | 61 |
| abstract_inverted_index.videos | 3 |
| abstract_inverted_index.Anomaly | 0 |
| abstract_inverted_index.address | 63 |
| abstract_inverted_index.anomaly | 191, 214, 232 |
| abstract_inverted_index.conduct | 175 |
| abstract_inverted_index.forward | 115 |
| abstract_inverted_index.frames, | 149 |
| abstract_inverted_index.frames. | 128 |
| abstract_inverted_index.further | 125 |
| abstract_inverted_index.inputs. | 208 |
| abstract_inverted_index.issues, | 65 |
| abstract_inverted_index.leading | 48 |
| abstract_inverted_index.margin, | 228 |
| abstract_inverted_index.methods | 26, 224 |
| abstract_inverted_index.notable | 227 |
| abstract_inverted_index.objects | 170 |
| abstract_inverted_index.optical | 186 |
| abstract_inverted_index.overfit | 44 |
| abstract_inverted_index.problem | 156 |
| abstract_inverted_index.propose | 73 |
| abstract_inverted_index.testing | 123, 135 |
| abstract_inverted_index.Finally, | 189 |
| abstract_inverted_index.Previous | 10 |
| abstract_inverted_index.abnormal | 56, 148 |
| abstract_inverted_index.achieves | 230 |
| abstract_inverted_index.approach | 220 |
| abstract_inverted_index.datasets | 216 |
| abstract_inverted_index.designed | 101, 194 |
| abstract_inverted_index.enhanced | 90 |
| abstract_inverted_index.equipped | 97 |
| abstract_inverted_index.existing | 24 |
| abstract_inverted_index.firstly, | 66 |
| abstract_inverted_index.learning | 109 |
| abstract_inverted_index.modeling | 37 |
| abstract_inverted_index.networks | 16 |
| abstract_inverted_index.patches. | 188 |
| abstract_inverted_index.previous | 222 |
| abstract_inverted_index.problem. | 9 |
| abstract_inverted_index.samples, | 47 |
| abstract_inverted_index.temporal | 38, 108 |
| abstract_inverted_index.training | 46 |
| abstract_inverted_index.${\textbf | 74, 77 |
| abstract_inverted_index.Extensive | 209 |
| abstract_inverted_index.Secondly, | 112 |
| abstract_inverted_index.anomalous | 127 |
| abstract_inverted_index.attention | 104 |
| abstract_inverted_index.available | 239 |
| abstract_inverted_index.benchmark | 212 |
| abstract_inverted_index.detection | 1, 215, 233 |
| abstract_inverted_index.efficient | 107 |
| abstract_inverted_index.inference | 60 |
| abstract_inverted_index.learnable | 102 |
| abstract_inverted_index.perturbed | 207 |
| abstract_inverted_index.relevance | 163 |
| abstract_inverted_index.technique | 121 |
| abstract_inverted_index.E}$ncoder, | 80 |
| abstract_inverted_index.T}$emporal | 76 |
| abstract_inverted_index.approaches | 11 |
| abstract_inverted_index.magnitude, | 133 |
| abstract_inverted_index.mitigating | 153 |
| abstract_inverted_index.reasoning. | 111 |
| abstract_inverted_index.abnormality | 167 |
| abstract_inverted_index.approaches. | 22 |
| abstract_inverted_index.autoencoder | 87 |
| abstract_inverted_index.challenging | 8 |
| abstract_inverted_index.combination | 198 |
| abstract_inverted_index.consecutive | 91 |
| abstract_inverted_index.contributes | 151 |
| abstract_inverted_index.demonstrate | 217 |
| abstract_inverted_index.dependency; | 39 |
| abstract_inverted_index.experiments | 210 |
| abstract_inverted_index.inspiration | 69 |
| abstract_inverted_index.outperforms | 221 |
| abstract_inverted_index.overfitting | 155 |
| abstract_inverted_index.performance | 234 |
| abstract_inverted_index.significant | 6 |
| abstract_inverted_index.transformer | 71 |
| abstract_inverted_index.autoencoders | 32 |
| abstract_inverted_index.object-level | 176 |
| abstract_inverted_index.perturbation | 120, 132 |
| abstract_inverted_index.specifically | 100 |
| abstract_inverted_index.Nevertheless, | 23 |
| abstract_inverted_index.consistently. | 235 |
| abstract_inverted_index.convolutional | 31, 103 |
| abstract_inverted_index.corresponding | 185 |
| abstract_inverted_index.differentiate | 126 |
| abstract_inverted_index.old-fashioned | 30 |
| abstract_inverted_index.reconstruction | 51, 136, 177, 204 |
| abstract_inverted_index.reconstruction. | 93, 158 |
| abstract_inverted_index.A}$uto-${\textbf | 78 |
| abstract_inverted_index.prediction-based | 21 |
| abstract_inverted_index.state-of-the-art | 231 |
| abstract_inverted_index.$\textbf{STATE}$, | 83 |
| abstract_inverted_index.T}$rans-${\textbf | 79 |
| abstract_inverted_index.indistinguishable | 50 |
| abstract_inverted_index.S}$patio-${\textbf | 75 |
| abstract_inverted_index.reconstruction-based | 19, 25, 118, 223 |
| abstract_inverted_index.https://github.com/wyzjack/MRMGA4VAD. | 241 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile |