Making the most of data: Quantum Monte Carlo postanalysis revisited Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1103/physreve.105.045313
In quantum Monte Carlo (QMC) methods, energy estimators are calculated as (functions of) statistical averages of quantities sampled during a calculation. Associated statistical errors of these averages are often estimated. This error estimation is not straightforward and there are several choices of the error estimation methods. We evaluate the performance of three methods (the Straatsma method, an autoregressive model, and a blocking analysis based on von Neumann's ratio test for randomness) for the energy time series given by three QMC methods [diffusion Monte Carlo, full configuration interaction Quantum Monte Carlo (FCIQMC), and coupled cluster Monte Carlo (CCMC)]. From these analyses, we describe a hybrid analysis method which provides reliable error estimates for a series of various lengths of FCIQMC and CCMC's time series. Equally important is the estimation of the appropriate start point of the equilibrated phase. We establish that a simple mean squared error rule method as described by White [K. P. White, Jr., ] can provide reasonable estimations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1103/physreve.105.045313
- http://link.aps.org/pdf/10.1103/PhysRevE.105.045313
- OA Status
- hybrid
- Cited By
- 1
- References
- 71
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2936655930
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2936655930Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1103/physreve.105.045313Digital Object Identifier
- Title
-
Making the most of data: Quantum Monte Carlo postanalysis revisitedWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-19Full publication date if available
- Authors
-
Tom Ichibha, Verena A. Neufeld, Kenta Hongo, Ryo Maezono, Alex J. W. ThomList of authors in order
- Landing page
-
https://doi.org/10.1103/physreve.105.045313Publisher landing page
- PDF URL
-
https://link.aps.org/pdf/10.1103/PhysRevE.105.045313Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.aps.org/pdf/10.1103/PhysRevE.105.045313Direct OA link when available
- Concepts
-
Monte Carlo method, Estimator, Quantum Monte Carlo, Series (stratigraphy), Monte Carlo method in statistical physics, Quasi-Monte Carlo method, Statistical physics, Monte Carlo integration, Hybrid Monte Carlo, Randomness, Monte Carlo molecular modeling, Computer science, Dynamic Monte Carlo method, Algorithm, Mathematics, Applied mathematics, Statistics, Markov chain Monte Carlo, Physics, Paleontology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- References (count)
-
71Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2936655930 |
|---|---|
| doi | https://doi.org/10.1103/physreve.105.045313 |
| ids.doi | https://doi.org/10.17863/cam.82480 |
| ids.mag | 2936655930 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35590595 |
| ids.openalex | https://openalex.org/W2936655930 |
| fwci | 0.58692704 |
| type | article |
| title | Making the most of data: Quantum Monte Carlo postanalysis revisited |
| awards[0].id | https://openalex.org/G5798186724 |
| awards[0].funder_id | https://openalex.org/F4320338279 |
| awards[0].display_name | |
| awards[0].funder_award_id | AFOSR-AOARD/FA2386-17-1-4049 |
| awards[0].funder_display_name | Air Force Office of Scientific Research |
| awards[1].id | https://openalex.org/G6336989300 |
| awards[1].funder_id | https://openalex.org/F4320320912 |
| awards[1].display_name | |
| awards[1].funder_award_id | JP19K05029 |
| awards[1].funder_display_name | Ministry of Education, Culture, Sports, Science and Technology |
| awards[2].id | https://openalex.org/G569932317 |
| awards[2].funder_id | https://openalex.org/F4320320912 |
| awards[2].display_name | |
| awards[2].funder_award_id | 17H05478 |
| awards[2].funder_display_name | Ministry of Education, Culture, Sports, Science and Technology |
| awards[3].id | https://openalex.org/G8102981138 |
| awards[3].funder_id | https://openalex.org/F4320320912 |
| awards[3].display_name | |
| awards[3].funder_award_id | JP17K17762 |
| awards[3].funder_display_name | Ministry of Education, Culture, Sports, Science and Technology |
| awards[4].id | https://openalex.org/G7024615958 |
| awards[4].funder_id | https://openalex.org/F4320334764 |
| awards[4].display_name | |
| awards[4].funder_award_id | 18J12653 |
| awards[4].funder_display_name | Japan Society for the Promotion of Science |
| awards[5].id | https://openalex.org/G3378815817 |
| awards[5].funder_id | https://openalex.org/F4320320912 |
| awards[5].display_name | |
| awards[5].funder_award_id | JP16H06439 |
| awards[5].funder_display_name | Ministry of Education, Culture, Sports, Science and Technology |
| awards[6].id | https://openalex.org/G5011023504 |
| awards[6].funder_id | https://openalex.org/F4320338279 |
| awards[6].display_name | |
| awards[6].funder_award_id | FA2386-20-1-4036 |
| awards[6].funder_display_name | Air Force Office of Scientific Research |
| awards[7].id | https://openalex.org/G4572308472 |
| awards[7].funder_id | https://openalex.org/F4320320912 |
| awards[7].display_name | |
| awards[7].funder_award_id | hp170220 |
| awards[7].funder_display_name | Ministry of Education, Culture, Sports, Science and Technology |
| awards[8].id | https://openalex.org/G28939730 |
| awards[8].funder_id | https://openalex.org/F4320320912 |
| awards[8].display_name | |
| awards[8].funder_award_id | JP19H05169 |
| awards[8].funder_display_name | Ministry of Education, Culture, Sports, Science and Technology |
| awards[9].id | https://openalex.org/G2007797015 |
| awards[9].funder_id | https://openalex.org/F4320320912 |
| awards[9].display_name | |
| awards[9].funder_award_id | hp170269 |
| awards[9].funder_display_name | Ministry of Education, Culture, Sports, Science and Technology |
| awards[10].id | https://openalex.org/G4069894743 |
| awards[10].funder_id | https://openalex.org/F4320334627 |
| awards[10].display_name | |
| awards[10].funder_award_id | EP/L015552/1 |
| awards[10].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[11].id | https://openalex.org/G5170566577 |
| awards[11].funder_id | https://openalex.org/F4320320912 |
| awards[11].display_name | |
| awards[11].funder_award_id | 16KK0097 |
| awards[11].funder_display_name | Ministry of Education, Culture, Sports, Science and Technology |
| biblio.issue | 4 |
| biblio.volume | 105 |
| biblio.last_page | 045313 |
| biblio.first_page | 045313 |
| topics[0].id | https://openalex.org/T10002 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3107 |
| topics[0].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[0].display_name | Advanced Chemical Physics Studies |
| topics[1].id | https://openalex.org/T11965 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.996999979019165 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3107 |
| topics[1].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[1].display_name | Quantum, superfluid, helium dynamics |
| topics[2].id | https://openalex.org/T11177 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9957000017166138 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3107 |
| topics[2].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[2].display_name | Spectroscopy and Quantum Chemical Studies |
| funders[0].id | https://openalex.org/F4320320006 |
| funders[0].ror | https://ror.org/03wnrjx87 |
| funders[0].display_name | Royal Society |
| funders[1].id | https://openalex.org/F4320320912 |
| funders[1].ror | https://ror.org/048rj2z13 |
| funders[1].display_name | Ministry of Education, Culture, Sports, Science and Technology |
| funders[2].id | https://openalex.org/F4320322622 |
| funders[2].ror | https://ror.org/02zqm6r10 |
| funders[2].display_name | Toyota Motor Corporation |
| funders[3].id | https://openalex.org/F4320334627 |
| funders[3].ror | https://ror.org/0439y7842 |
| funders[3].display_name | Engineering and Physical Sciences Research Council |
| funders[4].id | https://openalex.org/F4320334764 |
| funders[4].ror | https://ror.org/00hhkn466 |
| funders[4].display_name | Japan Society for the Promotion of Science |
| funders[5].id | https://openalex.org/F4320338279 |
| funders[5].ror | https://ror.org/011e9bt93 |
| funders[5].display_name | Air Force Office of Scientific Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C19499675 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8048732280731201 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[0].display_name | Monte Carlo method |
| concepts[1].id | https://openalex.org/C185429906 |
| concepts[1].level | 2 |
| concepts[1].score | 0.677316427230835 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[1].display_name | Estimator |
| concepts[2].id | https://openalex.org/C16016025 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6155634522438049 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3861408 |
| concepts[2].display_name | Quantum Monte Carlo |
| concepts[3].id | https://openalex.org/C143724316 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5782611966133118 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[3].display_name | Series (stratigraphy) |
| concepts[4].id | https://openalex.org/C204493344 |
| concepts[4].level | 5 |
| concepts[4].score | 0.557610273361206 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6904698 |
| concepts[4].display_name | Monte Carlo method in statistical physics |
| concepts[5].id | https://openalex.org/C63320529 |
| concepts[5].level | 5 |
| concepts[5].score | 0.5496283173561096 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7269435 |
| concepts[5].display_name | Quasi-Monte Carlo method |
| concepts[6].id | https://openalex.org/C121864883 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4950839579105377 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[6].display_name | Statistical physics |
| concepts[7].id | https://openalex.org/C132725507 |
| concepts[7].level | 5 |
| concepts[7].score | 0.4937478005886078 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q39879 |
| concepts[7].display_name | Monte Carlo integration |
| concepts[8].id | https://openalex.org/C13153151 |
| concepts[8].level | 4 |
| concepts[8].score | 0.4909551441669464 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1639846 |
| concepts[8].display_name | Hybrid Monte Carlo |
| concepts[9].id | https://openalex.org/C125112378 |
| concepts[9].level | 2 |
| concepts[9].score | 0.48796314001083374 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q176640 |
| concepts[9].display_name | Randomness |
| concepts[10].id | https://openalex.org/C37669827 |
| concepts[10].level | 4 |
| concepts[10].score | 0.47138530015945435 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q6904703 |
| concepts[10].display_name | Monte Carlo molecular modeling |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.4185660183429718 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C122592724 |
| concepts[12].level | 3 |
| concepts[12].score | 0.414778470993042 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3855635 |
| concepts[12].display_name | Dynamic Monte Carlo method |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.41262492537498474 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.3855612874031067 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C28826006 |
| concepts[15].level | 1 |
| concepts[15].score | 0.36659395694732666 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[15].display_name | Applied mathematics |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.3396190404891968 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C111350023 |
| concepts[17].level | 3 |
| concepts[17].score | 0.24705952405929565 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1191869 |
| concepts[17].display_name | Markov chain Monte Carlo |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.13830521702766418 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C151730666 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[19].display_name | Paleontology |
| concepts[20].id | https://openalex.org/C86803240 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[20].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[0].score | 0.8048732280731201 |
| keywords[0].display_name | Monte Carlo method |
| keywords[1].id | https://openalex.org/keywords/estimator |
| keywords[1].score | 0.677316427230835 |
| keywords[1].display_name | Estimator |
| keywords[2].id | https://openalex.org/keywords/quantum-monte-carlo |
| keywords[2].score | 0.6155634522438049 |
| keywords[2].display_name | Quantum Monte Carlo |
| keywords[3].id | https://openalex.org/keywords/series |
| keywords[3].score | 0.5782611966133118 |
| keywords[3].display_name | Series (stratigraphy) |
| keywords[4].id | https://openalex.org/keywords/monte-carlo-method-in-statistical-physics |
| keywords[4].score | 0.557610273361206 |
| keywords[4].display_name | Monte Carlo method in statistical physics |
| keywords[5].id | https://openalex.org/keywords/quasi-monte-carlo-method |
| keywords[5].score | 0.5496283173561096 |
| keywords[5].display_name | Quasi-Monte Carlo method |
| keywords[6].id | https://openalex.org/keywords/statistical-physics |
| keywords[6].score | 0.4950839579105377 |
| keywords[6].display_name | Statistical physics |
| keywords[7].id | https://openalex.org/keywords/monte-carlo-integration |
| keywords[7].score | 0.4937478005886078 |
| keywords[7].display_name | Monte Carlo integration |
| keywords[8].id | https://openalex.org/keywords/hybrid-monte-carlo |
| keywords[8].score | 0.4909551441669464 |
| keywords[8].display_name | Hybrid Monte Carlo |
| keywords[9].id | https://openalex.org/keywords/randomness |
| keywords[9].score | 0.48796314001083374 |
| keywords[9].display_name | Randomness |
| keywords[10].id | https://openalex.org/keywords/monte-carlo-molecular-modeling |
| keywords[10].score | 0.47138530015945435 |
| keywords[10].display_name | Monte Carlo molecular modeling |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.4185660183429718 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/dynamic-monte-carlo-method |
| keywords[12].score | 0.414778470993042 |
| keywords[12].display_name | Dynamic Monte Carlo method |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.41262492537498474 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.3855612874031067 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/applied-mathematics |
| keywords[15].score | 0.36659395694732666 |
| keywords[15].display_name | Applied mathematics |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.3396190404891968 |
| keywords[16].display_name | Statistics |
| keywords[17].id | https://openalex.org/keywords/markov-chain-monte-carlo |
| keywords[17].score | 0.24705952405929565 |
| keywords[17].display_name | Markov chain Monte Carlo |
| keywords[18].id | https://openalex.org/keywords/physics |
| keywords[18].score | 0.13830521702766418 |
| keywords[18].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1103/physreve.105.045313 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210235286 |
| locations[0].source.issn | 2470-0045, 2470-0053, 2470-0061 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2470-0045 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Physical review. E |
| locations[0].source.host_organization | https://openalex.org/P4310320261 |
| locations[0].source.host_organization_name | American Physical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320261 |
| locations[0].source.host_organization_lineage_names | American Physical Society |
| locations[0].license | cc-by |
| locations[0].pdf_url | http://link.aps.org/pdf/10.1103/PhysRevE.105.045313 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Physical Review E |
| locations[0].landing_page_url | https://doi.org/10.1103/physreve.105.045313 |
| locations[1].id | pmid:35590595 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Physical review. E |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35590595 |
| locations[2].id | pmh:oai:arXiv.org:1904.09934 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | https://arxiv.org/pdf/1904.09934 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://arxiv.org/abs/1904.09934 |
| locations[3].id | pmh:oai:www.repository.cam.ac.uk:1810/335041 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401776 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Apollo (University of Cambridge) |
| locations[3].source.host_organization | https://openalex.org/I241749 |
| locations[3].source.host_organization_name | University of Cambridge |
| locations[3].source.host_organization_lineage | https://openalex.org/I241749 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Article |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.repository.cam.ac.uk/handle/1810/335041 |
| locations[4].id | doi:10.17863/cam.82480 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S7407050737 |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Apollo |
| locations[4].source.host_organization | |
| locations[4].source.host_organization_name | |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | article-journal |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://doi.org/10.17863/cam.82480 |
| indexed_in | arxiv, crossref, datacite, pubmed |
| authorships[0].author.id | https://openalex.org/A5042934021 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7455-4968 |
| authorships[0].author.display_name | Tom Ichibha |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I177738480 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Information Science, JAIST, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I177738480 |
| authorships[0].institutions[0].ror | https://ror.org/03frj4r98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I177738480 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Japan Advanced Institute of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tom Ichibha |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Information Science, JAIST, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan |
| authorships[1].author.id | https://openalex.org/A5013849349 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4204-746X |
| authorships[1].author.display_name | Verena A. Neufeld |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I177738480 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Information Science, JAIST, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I177738480 |
| authorships[1].institutions[0].ror | https://ror.org/03frj4r98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I177738480 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Japan Advanced Institute of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Verena A. Neufeld |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Information Science, JAIST, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan |
| authorships[2].author.id | https://openalex.org/A5021444279 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2580-0907 |
| authorships[2].author.display_name | Kenta Hongo |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I177738480 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Information Science, JAIST, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I177738480 |
| authorships[2].institutions[0].ror | https://ror.org/03frj4r98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I177738480 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Japan Advanced Institute of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kenta Hongo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Information Science, JAIST, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan |
| authorships[3].author.id | https://openalex.org/A5042808676 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5875-971X |
| authorships[3].author.display_name | Ryo Maezono |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I177738480 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Information Science, JAIST, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I177738480 |
| authorships[3].institutions[0].ror | https://ror.org/03frj4r98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I177738480 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | Japan Advanced Institute of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ryo Maezono |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Information Science, JAIST, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan |
| authorships[4].author.id | https://openalex.org/A5050619307 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2417-7869 |
| authorships[4].author.display_name | Alex J. W. Thom |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I177738480 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Information Science, JAIST, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I177738480 |
| authorships[4].institutions[0].ror | https://ror.org/03frj4r98 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I177738480 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | Japan Advanced Institute of Science and Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Alex J. W. Thom |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Information Science, JAIST, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://link.aps.org/pdf/10.1103/PhysRevE.105.045313 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Making the most of data: Quantum Monte Carlo postanalysis revisited |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10002 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3107 |
| primary_topic.subfield.display_name | Atomic and Molecular Physics, and Optics |
| primary_topic.display_name | Advanced Chemical Physics Studies |
| related_works | https://openalex.org/W4294677683, https://openalex.org/W4367155567, https://openalex.org/W2019600130, https://openalex.org/W590971457, https://openalex.org/W3107111207, https://openalex.org/W2364466961, https://openalex.org/W1548972748, https://openalex.org/W2374592211, https://openalex.org/W2151084831, https://openalex.org/W2347943802 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1103/physreve.105.045313 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210235286 |
| best_oa_location.source.issn | 2470-0045, 2470-0053, 2470-0061 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2470-0045 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Physical review. E |
| best_oa_location.source.host_organization | https://openalex.org/P4310320261 |
| best_oa_location.source.host_organization_name | American Physical Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320261 |
| best_oa_location.source.host_organization_lineage_names | American Physical Society |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | http://link.aps.org/pdf/10.1103/PhysRevE.105.045313 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Physical Review E |
| best_oa_location.landing_page_url | https://doi.org/10.1103/physreve.105.045313 |
| primary_location.id | doi:10.1103/physreve.105.045313 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210235286 |
| primary_location.source.issn | 2470-0045, 2470-0053, 2470-0061 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2470-0045 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Physical review. E |
| primary_location.source.host_organization | https://openalex.org/P4310320261 |
| primary_location.source.host_organization_name | American Physical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320261 |
| primary_location.source.host_organization_lineage_names | American Physical Society |
| primary_location.license | cc-by |
| primary_location.pdf_url | http://link.aps.org/pdf/10.1103/PhysRevE.105.045313 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Physical Review E |
| primary_location.landing_page_url | https://doi.org/10.1103/physreve.105.045313 |
| publication_date | 2022-04-19 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2949166907, https://openalex.org/W2152452984, https://openalex.org/W2522590552, https://openalex.org/W2496168617, https://openalex.org/W2542461560, https://openalex.org/W2979139110, https://openalex.org/W2809976607, https://openalex.org/W2072808339, https://openalex.org/W2061620672, https://openalex.org/W2012745039, https://openalex.org/W2006112609, https://openalex.org/W1974293800, https://openalex.org/W1965546155, https://openalex.org/W1965288006, https://openalex.org/W2081614836, https://openalex.org/W2062465394, https://openalex.org/W2045434747, https://openalex.org/W2782019714, https://openalex.org/W2028395557, https://openalex.org/W2271168638, https://openalex.org/W2327812986, https://openalex.org/W2152253130, https://openalex.org/W2148302809, https://openalex.org/W3011180996, https://openalex.org/W2016853087, https://openalex.org/W2079612362, https://openalex.org/W2117083307, https://openalex.org/W2174219632, https://openalex.org/W2903095015, https://openalex.org/W2069006374, https://openalex.org/W2613386458, https://openalex.org/W2097290653, https://openalex.org/W1997827984, https://openalex.org/W2042885597, https://openalex.org/W2951002155, https://openalex.org/W3169532909, https://openalex.org/W2064060593, https://openalex.org/W2064566545, https://openalex.org/W1153814749, https://openalex.org/W2950669909, https://openalex.org/W2011301426, https://openalex.org/W3035965352, https://openalex.org/W3003257820, https://openalex.org/W3017082821, https://openalex.org/W2897139617, https://openalex.org/W3017300942, https://openalex.org/W4401946486, https://openalex.org/W4301856975, https://openalex.org/W2914097545, https://openalex.org/W4252386822, https://openalex.org/W2003680284, https://openalex.org/W3098198761, https://openalex.org/W3122189998, https://openalex.org/W4365806373, https://openalex.org/W3098006611, https://openalex.org/W2047059571, https://openalex.org/W3099948769, https://openalex.org/W3125925292, https://openalex.org/W2242464395, https://openalex.org/W3099878876, https://openalex.org/W2006787354, https://openalex.org/W3100747309, https://openalex.org/W3101962153, https://openalex.org/W3098723950, https://openalex.org/W2863416364, https://openalex.org/W2126231666, https://openalex.org/W2521113960, https://openalex.org/W2743927297, https://openalex.org/W3151593474, https://openalex.org/W3106327152, https://openalex.org/W3101447818 |
| referenced_works_count | 71 |
| abstract_inverted_index.] | 155 |
| abstract_inverted_index.a | 19, 60, 102, 112, 140 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.P. | 152 |
| abstract_inverted_index.We | 46, 137 |
| abstract_inverted_index.an | 56 |
| abstract_inverted_index.as | 10, 147 |
| abstract_inverted_index.by | 77, 149 |
| abstract_inverted_index.is | 33, 125 |
| abstract_inverted_index.of | 15, 24, 41, 50, 114, 117, 128, 133 |
| abstract_inverted_index.on | 64 |
| abstract_inverted_index.we | 100 |
| abstract_inverted_index.QMC | 79 |
| abstract_inverted_index.[K. | 151 |
| abstract_inverted_index.and | 36, 59, 91, 119 |
| abstract_inverted_index.are | 8, 27, 38 |
| abstract_inverted_index.can | 156 |
| abstract_inverted_index.for | 69, 71, 111 |
| abstract_inverted_index.not | 34 |
| abstract_inverted_index.of) | 12 |
| abstract_inverted_index.the | 42, 48, 72, 126, 129, 134 |
| abstract_inverted_index.von | 65 |
| abstract_inverted_index.(the | 53 |
| abstract_inverted_index.From | 97 |
| abstract_inverted_index.Jr., | 154 |
| abstract_inverted_index.This | 30 |
| abstract_inverted_index.full | 84 |
| abstract_inverted_index.mean | 142 |
| abstract_inverted_index.rule | 145 |
| abstract_inverted_index.test | 68 |
| abstract_inverted_index.that | 139 |
| abstract_inverted_index.time | 74, 121 |
| abstract_inverted_index.(QMC) | 4 |
| abstract_inverted_index.Carlo | 3, 89, 95 |
| abstract_inverted_index.Monte | 2, 82, 88, 94 |
| abstract_inverted_index.White | 150 |
| abstract_inverted_index.based | 63 |
| abstract_inverted_index.error | 31, 43, 109, 144 |
| abstract_inverted_index.given | 76 |
| abstract_inverted_index.often | 28 |
| abstract_inverted_index.point | 132 |
| abstract_inverted_index.ratio | 67 |
| abstract_inverted_index.start | 131 |
| abstract_inverted_index.there | 37 |
| abstract_inverted_index.these | 25, 98 |
| abstract_inverted_index.three | 51, 78 |
| abstract_inverted_index.which | 106 |
| abstract_inverted_index.CCMC's | 120 |
| abstract_inverted_index.Carlo, | 83 |
| abstract_inverted_index.FCIQMC | 118 |
| abstract_inverted_index.White, | 153 |
| abstract_inverted_index.during | 18 |
| abstract_inverted_index.energy | 6, 73 |
| abstract_inverted_index.errors | 23 |
| abstract_inverted_index.hybrid | 103 |
| abstract_inverted_index.method | 105, 146 |
| abstract_inverted_index.model, | 58 |
| abstract_inverted_index.phase. | 136 |
| abstract_inverted_index.series | 75, 113 |
| abstract_inverted_index.simple | 141 |
| abstract_inverted_index.Equally | 123 |
| abstract_inverted_index.Quantum | 87 |
| abstract_inverted_index.choices | 40 |
| abstract_inverted_index.cluster | 93 |
| abstract_inverted_index.coupled | 92 |
| abstract_inverted_index.lengths | 116 |
| abstract_inverted_index.method, | 55 |
| abstract_inverted_index.methods | 52, 80 |
| abstract_inverted_index.provide | 157 |
| abstract_inverted_index.quantum | 1 |
| abstract_inverted_index.sampled | 17 |
| abstract_inverted_index.series. | 122 |
| abstract_inverted_index.several | 39 |
| abstract_inverted_index.squared | 143 |
| abstract_inverted_index.various | 115 |
| abstract_inverted_index.(CCMC)]. | 96 |
| abstract_inverted_index.analysis | 62, 104 |
| abstract_inverted_index.averages | 14, 26 |
| abstract_inverted_index.blocking | 61 |
| abstract_inverted_index.describe | 101 |
| abstract_inverted_index.evaluate | 47 |
| abstract_inverted_index.methods, | 5 |
| abstract_inverted_index.methods. | 45 |
| abstract_inverted_index.provides | 107 |
| abstract_inverted_index.reliable | 108 |
| abstract_inverted_index.(FCIQMC), | 90 |
| abstract_inverted_index.Neumann's | 66 |
| abstract_inverted_index.Straatsma | 54 |
| abstract_inverted_index.analyses, | 99 |
| abstract_inverted_index.described | 148 |
| abstract_inverted_index.establish | 138 |
| abstract_inverted_index.estimates | 110 |
| abstract_inverted_index.important | 124 |
| abstract_inverted_index.(functions | 11 |
| abstract_inverted_index.Associated | 21 |
| abstract_inverted_index.[diffusion | 81 |
| abstract_inverted_index.calculated | 9 |
| abstract_inverted_index.estimated. | 29 |
| abstract_inverted_index.estimation | 32, 44, 127 |
| abstract_inverted_index.estimators | 7 |
| abstract_inverted_index.quantities | 16 |
| abstract_inverted_index.reasonable | 158 |
| abstract_inverted_index.appropriate | 130 |
| abstract_inverted_index.interaction | 86 |
| abstract_inverted_index.performance | 49 |
| abstract_inverted_index.randomness) | 70 |
| abstract_inverted_index.statistical | 13, 22 |
| abstract_inverted_index.calculation. | 20 |
| abstract_inverted_index.equilibrated | 135 |
| abstract_inverted_index.estimations. | 159 |
| abstract_inverted_index.configuration | 85 |
| abstract_inverted_index.autoregressive | 57 |
| abstract_inverted_index.straightforward | 35 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8700000047683716 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.50055884 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |