Malaria detection using deep residual networks with mobile microscopy Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1016/j.jksuci.2020.07.003
Automatic segmentation of erythrocytes in microscopic blood smear phone images is a critical step to visualize and identify malaria using machine learning technologies. However, it still remains a challenging problem due to the scarcity of experts, low image qualities, slow manual and inefficient quality of diagnosis. To handle these issues to some extent, we proposed an effective multi-magnification deep residual neural network (MM-ResNet), where we fully automatically classify the microscopic blood smear images as either infected/ non-infected at multiple magnifications. We have experimentally evaluated our approach by using it to train more efficient variants of different compact deep convolutional neural networks (CNN), evaluated on phone datasets. The MM-ResNet end-to-end framework shows similar or superior accuracy than the baseline architectures, as measured by GPU timings on the publicly available microscopic blood smear phone images. This approach is the first application of a MM-ResNet for malaria-infected erythrocyte identification in microscopic blood smear images.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.jksuci.2020.07.003
- OA Status
- hybrid
- Cited By
- 58
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3043424264
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3043424264Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.jksuci.2020.07.003Digital Object Identifier
- Title
-
Malaria detection using deep residual networks with mobile microscopyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-07-16Full publication date if available
- Authors
-
Priyadarshini Adyasha Pattanaik, Mohit Mittal, Mohammad Zubair Khan, Surya Narayan PandaList of authors in order
- Landing page
-
https://doi.org/10.1016/j.jksuci.2020.07.003Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.jksuci.2020.07.003Direct OA link when available
- Concepts
-
Convolutional neural network, Computer science, Artificial intelligence, Residual, Deep learning, Residual neural network, Blood smear, Mobile phone, Segmentation, Magnification, Pattern recognition (psychology), Malaria, Computer vision, Phone, Pathology, Medicine, Telecommunications, Linguistics, Philosophy, AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
58Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 16, 2023: 10, 2022: 16, 2021: 10Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3043424264 |
|---|---|
| doi | https://doi.org/10.1016/j.jksuci.2020.07.003 |
| ids.doi | https://doi.org/10.1016/j.jksuci.2020.07.003 |
| ids.mag | 3043424264 |
| ids.openalex | https://openalex.org/W3043424264 |
| fwci | 3.88379076 |
| type | article |
| title | Malaria detection using deep residual networks with mobile microscopy |
| biblio.issue | 5 |
| biblio.volume | 34 |
| biblio.last_page | 1705 |
| biblio.first_page | 1700 |
| topics[0].id | https://openalex.org/T12874 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Digital Imaging for Blood Diseases |
| topics[1].id | https://openalex.org/T12859 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9919999837875366 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1304 |
| topics[1].subfield.display_name | Biophysics |
| topics[1].display_name | Cell Image Analysis Techniques |
| topics[2].id | https://openalex.org/T13114 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9833999872207642 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Image Processing Techniques and Applications |
| is_xpac | False |
| apc_list.value | 1350 |
| apc_list.currency | USD |
| apc_list.value_usd | 1350 |
| apc_paid.value | 1350 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1350 |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7455552220344543 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7282025814056396 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7023502588272095 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C155512373 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6574379205703735 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[3].display_name | Residual |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6510234475135803 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C2944601119 |
| concepts[5].level | 3 |
| concepts[5].score | 0.648871898651123 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q43744058 |
| concepts[5].display_name | Residual neural network |
| concepts[6].id | https://openalex.org/C3017819844 |
| concepts[6].level | 3 |
| concepts[6].score | 0.631711483001709 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q886475 |
| concepts[6].display_name | Blood smear |
| concepts[7].id | https://openalex.org/C2777421447 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5998168587684631 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17517 |
| concepts[7].display_name | Mobile phone |
| concepts[8].id | https://openalex.org/C89600930 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5754633545875549 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[8].display_name | Segmentation |
| concepts[9].id | https://openalex.org/C4144372 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5540333986282349 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q675287 |
| concepts[9].display_name | Magnification |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.5111601948738098 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C2778048844 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4985775947570801 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12156 |
| concepts[11].display_name | Malaria |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4637354910373688 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C2778707766 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4175467789173126 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q202064 |
| concepts[13].display_name | Phone |
| concepts[14].id | https://openalex.org/C142724271 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2118152379989624 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[14].display_name | Pathology |
| concepts[15].id | https://openalex.org/C71924100 |
| concepts[15].level | 0 |
| concepts[15].score | 0.15187567472457886 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[15].display_name | Medicine |
| concepts[16].id | https://openalex.org/C76155785 |
| concepts[16].level | 1 |
| concepts[16].score | 0.12129080295562744 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[16].display_name | Telecommunications |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C11413529 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[19].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7455552220344543 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7282025814056396 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7023502588272095 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/residual |
| keywords[3].score | 0.6574379205703735 |
| keywords[3].display_name | Residual |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.6510234475135803 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/residual-neural-network |
| keywords[5].score | 0.648871898651123 |
| keywords[5].display_name | Residual neural network |
| keywords[6].id | https://openalex.org/keywords/blood-smear |
| keywords[6].score | 0.631711483001709 |
| keywords[6].display_name | Blood smear |
| keywords[7].id | https://openalex.org/keywords/mobile-phone |
| keywords[7].score | 0.5998168587684631 |
| keywords[7].display_name | Mobile phone |
| keywords[8].id | https://openalex.org/keywords/segmentation |
| keywords[8].score | 0.5754633545875549 |
| keywords[8].display_name | Segmentation |
| keywords[9].id | https://openalex.org/keywords/magnification |
| keywords[9].score | 0.5540333986282349 |
| keywords[9].display_name | Magnification |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.5111601948738098 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/malaria |
| keywords[11].score | 0.4985775947570801 |
| keywords[11].display_name | Malaria |
| keywords[12].id | https://openalex.org/keywords/computer-vision |
| keywords[12].score | 0.4637354910373688 |
| keywords[12].display_name | Computer vision |
| keywords[13].id | https://openalex.org/keywords/phone |
| keywords[13].score | 0.4175467789173126 |
| keywords[13].display_name | Phone |
| keywords[14].id | https://openalex.org/keywords/pathology |
| keywords[14].score | 0.2118152379989624 |
| keywords[14].display_name | Pathology |
| keywords[15].id | https://openalex.org/keywords/medicine |
| keywords[15].score | 0.15187567472457886 |
| keywords[15].display_name | Medicine |
| keywords[16].id | https://openalex.org/keywords/telecommunications |
| keywords[16].score | 0.12129080295562744 |
| keywords[16].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1016/j.jksuci.2020.07.003 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764955546 |
| locations[0].source.issn | 1319-1578, 2213-1248 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1319-1578 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of King Saud University - Computer and Information Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of King Saud University - Computer and Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.1016/j.jksuci.2020.07.003 |
| locations[1].id | pmh:oai:doaj.org/article:709f6fa7469141b6b3e54a4e0ef60a82 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of King Saud University: Computer and Information Sciences, Vol 34, Iss 5, Pp 1700-1705 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/709f6fa7469141b6b3e54a4e0ef60a82 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5086253261 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5058-5471 |
| authorships[0].author.display_name | Priyadarshini Adyasha Pattanaik |
| authorships[0].countries | FR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210145102, https://openalex.org/I4387153010 |
| authorships[0].affiliations[0].raw_affiliation_string | Telecom SudParis, 9 rue Charles Fourier, 91011, Evry Cedex, France |
| authorships[0].institutions[0].id | https://openalex.org/I4387153010 |
| authorships[0].institutions[0].ror | https://ror.org/05xvk4r52 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I205703379, https://openalex.org/I4210145102, https://openalex.org/I4210145102, https://openalex.org/I4387153010 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | Telecom SudParis |
| authorships[0].institutions[1].id | https://openalex.org/I4210145102 |
| authorships[0].institutions[1].ror | https://ror.org/042tfbd02 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210145102 |
| authorships[0].institutions[1].country_code | FR |
| authorships[0].institutions[1].display_name | Institut Polytechnique de Paris |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | P.A. Pattanaik |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Telecom SudParis, 9 rue Charles Fourier, 91011, Evry Cedex, France |
| authorships[1].author.id | https://openalex.org/A5091132933 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0878-4615 |
| authorships[1].author.display_name | Mohit Mittal |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I168356945 |
| authorships[1].affiliations[0].raw_affiliation_string | Information Science and Engineering, Kyoto Sangyo University, Kamigamo, Kita-ku, 603-8555 Kyoto, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I168356945 |
| authorships[1].institutions[0].ror | https://ror.org/05t70xh16 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I168356945 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Kyoto Sangyo University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohit Mittal |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Information Science and Engineering, Kyoto Sangyo University, Kamigamo, Kita-ku, 603-8555 Kyoto, Japan |
| authorships[2].author.id | https://openalex.org/A5018144959 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2409-7172 |
| authorships[2].author.display_name | Mohammad Zubair Khan |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I23075662 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Computer Science and Engineering, Taibah University, 41477 Madinah, Saudi Arabia |
| authorships[2].institutions[0].id | https://openalex.org/I23075662 |
| authorships[2].institutions[0].ror | https://ror.org/01xv1nn60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I23075662 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | Taibah University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mohammad Zubair Khan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, College of Computer Science and Engineering, Taibah University, 41477 Madinah, Saudi Arabia |
| authorships[3].author.id | https://openalex.org/A5026593731 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3964-9176 |
| authorships[3].author.display_name | Surya Narayan Panda |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I74319210 |
| authorships[3].affiliations[0].raw_affiliation_string | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India |
| authorships[3].institutions[0].id | https://openalex.org/I74319210 |
| authorships[3].institutions[0].ror | https://ror.org/057d6z539 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I74319210 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Chitkara University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | S.N. Panda |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.jksuci.2020.07.003 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Malaria detection using deep residual networks with mobile microscopy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12874 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Digital Imaging for Blood Diseases |
| related_works | https://openalex.org/W4256609757, https://openalex.org/W2152595177, https://openalex.org/W2041117173, https://openalex.org/W2022127494, https://openalex.org/W1810141276, https://openalex.org/W2023135624, https://openalex.org/W1977757029, https://openalex.org/W2005715326, https://openalex.org/W2418534670, https://openalex.org/W2047186806 |
| cited_by_count | 58 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 16 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 16 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 10 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.jksuci.2020.07.003 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764955546 |
| best_oa_location.source.issn | 1319-1578, 2213-1248 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1319-1578 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of King Saud University - Computer and Information Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of King Saud University - Computer and Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.jksuci.2020.07.003 |
| primary_location.id | doi:10.1016/j.jksuci.2020.07.003 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764955546 |
| primary_location.source.issn | 1319-1578, 2213-1248 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1319-1578 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of King Saud University - Computer and Information Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of King Saud University - Computer and Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.1016/j.jksuci.2020.07.003 |
| publication_date | 2020-07-16 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2620578070, https://openalex.org/W2415594836, https://openalex.org/W6688995163, https://openalex.org/W1524918022, https://openalex.org/W6741561106, https://openalex.org/W2345010043, https://openalex.org/W6687483927, https://openalex.org/W6741512680, https://openalex.org/W1998399571, https://openalex.org/W6684191040, https://openalex.org/W2919115771, https://openalex.org/W6732336486, https://openalex.org/W6642096636, https://openalex.org/W289051718, https://openalex.org/W4241824509, https://openalex.org/W6738897456, https://openalex.org/W3028573817, https://openalex.org/W6727219968, https://openalex.org/W2425776900, https://openalex.org/W2140927567, https://openalex.org/W6689694917, https://openalex.org/W2606416966, https://openalex.org/W1996095832, https://openalex.org/W2194775991, https://openalex.org/W4292907187, https://openalex.org/W4254181784, https://openalex.org/W2576442780, https://openalex.org/W2963240574, https://openalex.org/W2216351247, https://openalex.org/W1967041227, https://openalex.org/W4236965008, https://openalex.org/W2963712920, https://openalex.org/W2560215812, https://openalex.org/W2521732732, https://openalex.org/W2739315424, https://openalex.org/W2233116163, https://openalex.org/W2163605009, https://openalex.org/W2182924040 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 11, 27, 140 |
| abstract_inverted_index.To | 46 |
| abstract_inverted_index.We | 80 |
| abstract_inverted_index.an | 55 |
| abstract_inverted_index.as | 73, 119 |
| abstract_inverted_index.at | 77 |
| abstract_inverted_index.by | 86, 121 |
| abstract_inverted_index.in | 4, 146 |
| abstract_inverted_index.is | 10, 135 |
| abstract_inverted_index.it | 24, 88 |
| abstract_inverted_index.of | 2, 34, 44, 94, 139 |
| abstract_inverted_index.on | 103, 124 |
| abstract_inverted_index.or | 112 |
| abstract_inverted_index.to | 14, 31, 50, 89 |
| abstract_inverted_index.we | 53, 64 |
| abstract_inverted_index.GPU | 122 |
| abstract_inverted_index.The | 106 |
| abstract_inverted_index.and | 16, 41 |
| abstract_inverted_index.due | 30 |
| abstract_inverted_index.for | 142 |
| abstract_inverted_index.low | 36 |
| abstract_inverted_index.our | 84 |
| abstract_inverted_index.the | 32, 68, 116, 125, 136 |
| abstract_inverted_index.This | 133 |
| abstract_inverted_index.deep | 58, 97 |
| abstract_inverted_index.have | 81 |
| abstract_inverted_index.more | 91 |
| abstract_inverted_index.slow | 39 |
| abstract_inverted_index.some | 51 |
| abstract_inverted_index.step | 13 |
| abstract_inverted_index.than | 115 |
| abstract_inverted_index.blood | 6, 70, 129, 148 |
| abstract_inverted_index.first | 137 |
| abstract_inverted_index.fully | 65 |
| abstract_inverted_index.image | 37 |
| abstract_inverted_index.phone | 8, 104, 131 |
| abstract_inverted_index.shows | 110 |
| abstract_inverted_index.smear | 7, 71, 130, 149 |
| abstract_inverted_index.still | 25 |
| abstract_inverted_index.these | 48 |
| abstract_inverted_index.train | 90 |
| abstract_inverted_index.using | 19, 87 |
| abstract_inverted_index.where | 63 |
| abstract_inverted_index.(CNN), | 101 |
| abstract_inverted_index.either | 74 |
| abstract_inverted_index.handle | 47 |
| abstract_inverted_index.images | 9, 72 |
| abstract_inverted_index.issues | 49 |
| abstract_inverted_index.manual | 40 |
| abstract_inverted_index.neural | 60, 99 |
| abstract_inverted_index.compact | 96 |
| abstract_inverted_index.extent, | 52 |
| abstract_inverted_index.images. | 132, 150 |
| abstract_inverted_index.machine | 20 |
| abstract_inverted_index.malaria | 18 |
| abstract_inverted_index.network | 61 |
| abstract_inverted_index.problem | 29 |
| abstract_inverted_index.quality | 43 |
| abstract_inverted_index.remains | 26 |
| abstract_inverted_index.similar | 111 |
| abstract_inverted_index.timings | 123 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.accuracy | 114 |
| abstract_inverted_index.approach | 85, 134 |
| abstract_inverted_index.baseline | 117 |
| abstract_inverted_index.classify | 67 |
| abstract_inverted_index.critical | 12 |
| abstract_inverted_index.experts, | 35 |
| abstract_inverted_index.identify | 17 |
| abstract_inverted_index.learning | 21 |
| abstract_inverted_index.measured | 120 |
| abstract_inverted_index.multiple | 78 |
| abstract_inverted_index.networks | 100 |
| abstract_inverted_index.proposed | 54 |
| abstract_inverted_index.publicly | 126 |
| abstract_inverted_index.residual | 59 |
| abstract_inverted_index.scarcity | 33 |
| abstract_inverted_index.superior | 113 |
| abstract_inverted_index.variants | 93 |
| abstract_inverted_index.Automatic | 0 |
| abstract_inverted_index.MM-ResNet | 107, 141 |
| abstract_inverted_index.available | 127 |
| abstract_inverted_index.datasets. | 105 |
| abstract_inverted_index.different | 95 |
| abstract_inverted_index.effective | 56 |
| abstract_inverted_index.efficient | 92 |
| abstract_inverted_index.evaluated | 83, 102 |
| abstract_inverted_index.framework | 109 |
| abstract_inverted_index.infected/ | 75 |
| abstract_inverted_index.visualize | 15 |
| abstract_inverted_index.diagnosis. | 45 |
| abstract_inverted_index.end-to-end | 108 |
| abstract_inverted_index.qualities, | 38 |
| abstract_inverted_index.application | 138 |
| abstract_inverted_index.challenging | 28 |
| abstract_inverted_index.erythrocyte | 144 |
| abstract_inverted_index.inefficient | 42 |
| abstract_inverted_index.microscopic | 5, 69, 128, 147 |
| abstract_inverted_index.(MM-ResNet), | 62 |
| abstract_inverted_index.erythrocytes | 3 |
| abstract_inverted_index.non-infected | 76 |
| abstract_inverted_index.segmentation | 1 |
| abstract_inverted_index.automatically | 66 |
| abstract_inverted_index.convolutional | 98 |
| abstract_inverted_index.technologies. | 22 |
| abstract_inverted_index.architectures, | 118 |
| abstract_inverted_index.experimentally | 82 |
| abstract_inverted_index.identification | 145 |
| abstract_inverted_index.magnifications. | 79 |
| abstract_inverted_index.malaria-infected | 143 |
| abstract_inverted_index.multi-magnification | 57 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5086253261 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I4210145102, https://openalex.org/I4387153010 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.94534925 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |